Yifei Yang , Haotian Li , Zhenyu Lei , Haichuan Yang , Jian Wang
{"title":"A Nonlinear Dimensionality Reduction Search Improved Differential Evolution for large-scale optimization","authors":"Yifei Yang , Haotian Li , Zhenyu Lei , Haichuan Yang , Jian Wang","doi":"10.1016/j.swevo.2024.101832","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale optimization problems present significant challenges due to the high dimensionality of the search spaces and the extensive computational resources required. This paper introduces a novel algorithm, Nonlinear Dimensionality Reduction Enhanced Differential Evolution (NDRDE), designed to address these challenges by integrating nonlinear dimensionality reduction techniques with differential evolution. The core innovation of NDRDE is its stochastic dimensionality reduction strategy, which enhances population diversity and improves the algorithm’s exploratory capabilities. NDRDE also employs a spherical search method to maximize the obliteration of directional information, thus increasing randomness and improving the exploration phase. The algorithm dynamically adjusts the dimensionality of the search space, leveraging a combination of high-dimensional precision search and low-dimensional exploratory search. This approach not only reduces the computational burden but also maintains a high level of accuracy in finding optimal solutions. Extensive experiments on the IEEE CEC large-scale global optimization benchmark problems, including CEC2010 and CEC2013, demonstrate that NDRDE significantly outperforms several state-of-the-art algorithms, showcasing its superiority in tackling large-scale optimization problems. The code for NDRDE will be made publicly available at <span><span>https://github.com/louiseklocky</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"92 ","pages":"Article 101832"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224003705","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale optimization problems present significant challenges due to the high dimensionality of the search spaces and the extensive computational resources required. This paper introduces a novel algorithm, Nonlinear Dimensionality Reduction Enhanced Differential Evolution (NDRDE), designed to address these challenges by integrating nonlinear dimensionality reduction techniques with differential evolution. The core innovation of NDRDE is its stochastic dimensionality reduction strategy, which enhances population diversity and improves the algorithm’s exploratory capabilities. NDRDE also employs a spherical search method to maximize the obliteration of directional information, thus increasing randomness and improving the exploration phase. The algorithm dynamically adjusts the dimensionality of the search space, leveraging a combination of high-dimensional precision search and low-dimensional exploratory search. This approach not only reduces the computational burden but also maintains a high level of accuracy in finding optimal solutions. Extensive experiments on the IEEE CEC large-scale global optimization benchmark problems, including CEC2010 and CEC2013, demonstrate that NDRDE significantly outperforms several state-of-the-art algorithms, showcasing its superiority in tackling large-scale optimization problems. The code for NDRDE will be made publicly available at https://github.com/louiseklocky.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.