{"title":"Prediction of runoff in the upper reaches of the Hei River based on the LSTM model guided by physical mechanisms","authors":"Huazhu Xue , Chaoqiang Guo , Guotao Dong , Chenchen Zhang , Yaokang Lian , Qian Yuan","doi":"10.1016/j.ejrh.2025.102218","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The upper reaches of the Hei River.</div></div><div><h3>Study focus</h3><div>To improve the accuracy, interpretability and physical consistency of LSTM models for predicting streamflow, we have constructed a physically dominant loss function in the LSTM model based on the monotonic physical mechanism of rainfall-runoff in the water balance. The new model (physics-guided LSTM model, PG-LSTM) was applied to predict streamflow in the upper reaches of the Hei River, and its accuracy and physical consistency in streamflow prediction were analyzed.</div></div><div><h3>New hydrological insights for the region</h3><div>The PG-LSTM model was successfully applied to the upper reaches of the Hei River, and the accuracy was evaluated by the Nash–Sutcliffe efficiency coefficient, root mean square error and Pearson correlation coefficient. The physical consistency of the model was evaluated by the volume error, relative error, and peak flow relative difference. The results showed that the PG-LSTM model had higher accuracy and physical consistency than the traditional LSTM model. The fitting accuracy between the measured and predicted values was 0.97, which is higher than that of the traditional LSTM model (0.89). In addition, the closer the subbasin was to the outlet of the basin, the better the effect of the PG-LSTM model. This model improvement method demonstrated high streamflow prediction accuracy and interpretability, providing a scientific basis for water resource planning and management.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"58 ","pages":"Article 102218"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825000424","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Study region
The upper reaches of the Hei River.
Study focus
To improve the accuracy, interpretability and physical consistency of LSTM models for predicting streamflow, we have constructed a physically dominant loss function in the LSTM model based on the monotonic physical mechanism of rainfall-runoff in the water balance. The new model (physics-guided LSTM model, PG-LSTM) was applied to predict streamflow in the upper reaches of the Hei River, and its accuracy and physical consistency in streamflow prediction were analyzed.
New hydrological insights for the region
The PG-LSTM model was successfully applied to the upper reaches of the Hei River, and the accuracy was evaluated by the Nash–Sutcliffe efficiency coefficient, root mean square error and Pearson correlation coefficient. The physical consistency of the model was evaluated by the volume error, relative error, and peak flow relative difference. The results showed that the PG-LSTM model had higher accuracy and physical consistency than the traditional LSTM model. The fitting accuracy between the measured and predicted values was 0.97, which is higher than that of the traditional LSTM model (0.89). In addition, the closer the subbasin was to the outlet of the basin, the better the effect of the PG-LSTM model. This model improvement method demonstrated high streamflow prediction accuracy and interpretability, providing a scientific basis for water resource planning and management.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.