{"title":"Multiband antenna design with a defected ground structure for 5G and X-band applications","authors":"Hakan Kisioglu","doi":"10.1016/j.aeue.2024.155651","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of new generation wireless communication systems has led to an increased demand for multiband antennas, which are capable of functioning across multiple frequency bands. This paper presents the design of a multiband antenna with defective ground structure for 5G and X-Band applications. The proposed antenna has overall dimensions (0.35λo × 0.35λo × 0.012λo) with respect to the lowest resonant frequency and is designed with an FR-4 substrate material. The proposed design enables the antenna to achieve relatively high gains in six different frequency bands, 2.02 dBi, 3.1 dBi, 5.37 dBi, 2.99 dBi, 3.11 dBi, and 6.48 dBi at 2.33 GHz, 3.3 GHz, 5.03 GHz, 6.84 GHz, 8.12 GHz, and 9.75 GHz, respectively. The proposed antenna exhibited −10 dB impedance bandwidths of 4.72 % (2.29–2.365 GHz), 4.24 % (3.24–3.37 GHz), 3.38 % (4.97–5.15 GHz), 3.95 % (6.69–6.96 GHz), 3.94 % (7.98–8.29 GHz), and 6.67 % (9.45–10.08 GHz) across diverse frequency bands. The antenna structure was fabricated and measurement results were obtained. A satisfactory agreement was observed between the simulation and the corresponding measurement results. The detailed performance analysis of the proposed antenna, together with measured and simulated results, shows that it is suitable for 5G and X band applications.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"190 ","pages":"Article 155651"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124005375","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of new generation wireless communication systems has led to an increased demand for multiband antennas, which are capable of functioning across multiple frequency bands. This paper presents the design of a multiband antenna with defective ground structure for 5G and X-Band applications. The proposed antenna has overall dimensions (0.35λo × 0.35λo × 0.012λo) with respect to the lowest resonant frequency and is designed with an FR-4 substrate material. The proposed design enables the antenna to achieve relatively high gains in six different frequency bands, 2.02 dBi, 3.1 dBi, 5.37 dBi, 2.99 dBi, 3.11 dBi, and 6.48 dBi at 2.33 GHz, 3.3 GHz, 5.03 GHz, 6.84 GHz, 8.12 GHz, and 9.75 GHz, respectively. The proposed antenna exhibited −10 dB impedance bandwidths of 4.72 % (2.29–2.365 GHz), 4.24 % (3.24–3.37 GHz), 3.38 % (4.97–5.15 GHz), 3.95 % (6.69–6.96 GHz), 3.94 % (7.98–8.29 GHz), and 6.67 % (9.45–10.08 GHz) across diverse frequency bands. The antenna structure was fabricated and measurement results were obtained. A satisfactory agreement was observed between the simulation and the corresponding measurement results. The detailed performance analysis of the proposed antenna, together with measured and simulated results, shows that it is suitable for 5G and X band applications.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.