Jan E. Marquardt , Bastian Eysel , Martin Sadric , Cornelia Rauh , Mathias J. Krause
{"title":"Potential for damage to fruits during transport through cross-section constrictions","authors":"Jan E. Marquardt , Bastian Eysel , Martin Sadric , Cornelia Rauh , Mathias J. Krause","doi":"10.1016/j.jfoodeng.2025.112473","DOIUrl":null,"url":null,"abstract":"<div><div>Fruit preparations are used in various forms in the food industry. For example, they are used as an ingredient in dairy products such as yogurt with added fruit. The dispersed fruit pieces can be described as soft particles with viscoelastic material behavior. The continuous phase is represented by fluids with complex flow behavior depending on the formulation. Characterization has shown that the fluids exhibit a yield stress and pseudoplastic behavior, which can be described by the Herschel–Bulkley model. Since damage to fruit pieces is undesirable in industrial transport processes, the potential for damage to fruit pieces during transport of pipes in cross-sectional constrictions is analyzed. The analysis is performed numerically using the homogenized lattice Boltzmann method and validated by an experiment on industrial fruit preparations at pilot plant scale. The results show a strong dependence of the damage potential on the (local) Metzner–Reed Reynolds number.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"392 ","pages":"Article 112473"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425000081","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fruit preparations are used in various forms in the food industry. For example, they are used as an ingredient in dairy products such as yogurt with added fruit. The dispersed fruit pieces can be described as soft particles with viscoelastic material behavior. The continuous phase is represented by fluids with complex flow behavior depending on the formulation. Characterization has shown that the fluids exhibit a yield stress and pseudoplastic behavior, which can be described by the Herschel–Bulkley model. Since damage to fruit pieces is undesirable in industrial transport processes, the potential for damage to fruit pieces during transport of pipes in cross-sectional constrictions is analyzed. The analysis is performed numerically using the homogenized lattice Boltzmann method and validated by an experiment on industrial fruit preparations at pilot plant scale. The results show a strong dependence of the damage potential on the (local) Metzner–Reed Reynolds number.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.