{"title":"A review on two-dimensional nanosheet membranes for separation","authors":"Xiaoming Yu, Yichun Cai, Tianfu Wang, Tongwen Yu","doi":"10.1016/j.flatc.2024.100774","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional building blocks with atomic thinness can be assembled into ultrathin separation membranes minimizing the transport resistance to maximize the permeation rate. Herein, this review focuses on the current states, challenges and perspectives of 2D nanosheet membranes. The nanosheet membranes, such as zeolite, metal–organic frameworks (MOFs), graphene and graphene oxide (GO), COFs-based and mixed matrix membranes (MMMs) as well as 2D confined membranes are first systematically introduced. Further, the recent advances of synthesis methods for 2D nanosheets and membranes are systematically reviewed. It concludes with the current challenges of membrane synthesis and performance, the perspectives are also provided.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"49 ","pages":"Article 100774"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001685","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional building blocks with atomic thinness can be assembled into ultrathin separation membranes minimizing the transport resistance to maximize the permeation rate. Herein, this review focuses on the current states, challenges and perspectives of 2D nanosheet membranes. The nanosheet membranes, such as zeolite, metal–organic frameworks (MOFs), graphene and graphene oxide (GO), COFs-based and mixed matrix membranes (MMMs) as well as 2D confined membranes are first systematically introduced. Further, the recent advances of synthesis methods for 2D nanosheets and membranes are systematically reviewed. It concludes with the current challenges of membrane synthesis and performance, the perspectives are also provided.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)