The role of delaminating agents on the structure, morphology, bonding and electrical properties of HF etched MXenes

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Swati Singh, Saicharan Dharavath, Supriya Kodali, Raj Kishora Dash
{"title":"The role of delaminating agents on the structure, morphology, bonding and electrical properties of HF etched MXenes","authors":"Swati Singh,&nbsp;Saicharan Dharavath,&nbsp;Supriya Kodali,&nbsp;Raj Kishora Dash","doi":"10.1016/j.flatc.2024.100806","DOIUrl":null,"url":null,"abstract":"<div><div>MXenes (2-dimensional metal carbides and carbonitrides) have gained significant attention as layered materials due to their unique combination of high electrical conductivity and hydrophilic nature. In this study, titanium carbide MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) nanosheets have been synthesized by etching the MAX phase (Ti<sub>3</sub>AlC<sub>2</sub>) using hydrofluoric acid (HF) and subsequently delaminated using three different reagents: Tetramethylammonium hydroxide (TMAOH), Dimethyl sulfoxide (DMSO) and Aqueous ammonia (aq. NH<sub>3</sub>). The impact of these delaminating agents on the structure, morphology and electrical properties of the resulting MXenes was thoroughly investigated to elucidate the underlying mechanisms. Experimental results reveal that TMAOH is more effective in achieving layer separation than DMSO and aqueous NH<sub>3</sub>. Field emission scanning electron microscopy (FESEM) images confirm superior delamination with TMAOH, resulting in thinner, more transparent sheets than those obtained with the other agents. Raman spectroscopy further confirms successful layer separation in samples delaminated with TMAOH and DMSO with various surface functional groups including –OH, –F, and =O present on all delaminated sheets indicating that functionalization occurs during delamination. The electrical conductivity measurements results reveal that the etched MAX phase (MX3) exhibits higher electrical conductivity than the delaminated samples of identical thickness, likely due to the Grotthuss mechanism of proton conductivity playing a dominant role.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"49 ","pages":"Article 100806"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724002009","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes (2-dimensional metal carbides and carbonitrides) have gained significant attention as layered materials due to their unique combination of high electrical conductivity and hydrophilic nature. In this study, titanium carbide MXene (Ti3C2Tx) nanosheets have been synthesized by etching the MAX phase (Ti3AlC2) using hydrofluoric acid (HF) and subsequently delaminated using three different reagents: Tetramethylammonium hydroxide (TMAOH), Dimethyl sulfoxide (DMSO) and Aqueous ammonia (aq. NH3). The impact of these delaminating agents on the structure, morphology and electrical properties of the resulting MXenes was thoroughly investigated to elucidate the underlying mechanisms. Experimental results reveal that TMAOH is more effective in achieving layer separation than DMSO and aqueous NH3. Field emission scanning electron microscopy (FESEM) images confirm superior delamination with TMAOH, resulting in thinner, more transparent sheets than those obtained with the other agents. Raman spectroscopy further confirms successful layer separation in samples delaminated with TMAOH and DMSO with various surface functional groups including –OH, –F, and =O present on all delaminated sheets indicating that functionalization occurs during delamination. The electrical conductivity measurements results reveal that the etched MAX phase (MX3) exhibits higher electrical conductivity than the delaminated samples of identical thickness, likely due to the Grotthuss mechanism of proton conductivity playing a dominant role.

Abstract Image

脱层剂对HF蚀刻MXenes结构、形貌、键合及电性能的影响
MXenes(二维金属碳化物和碳氮化物)由于其高导电性和亲水性的独特组合而作为层状材料受到了极大的关注。在这项研究中,碳化钛MXene (Ti3C2Tx)纳米片是通过氢氟酸(HF)蚀刻MAX相(Ti3AlC2)合成的,然后用三种不同的试剂:四甲基氢氧化铵(TMAOH),二甲基亚砜(DMSO)和水氨(aq. NH3)进行分层。深入研究了这些脱层剂对所得MXenes结构、形貌和电性能的影响,以阐明其潜在的机制。实验结果表明,TMAOH比DMSO和水溶液NH3更有效地实现层分离。场发射扫描电子显微镜(FESEM)图像证实了TMAOH具有较好的分层效果,导致比使用其他试剂获得的薄片更薄,更透明。拉曼光谱进一步证实了用TMAOH和DMSO分层的样品的成功层分离,所有分层片上都存在各种表面官能团,包括-OH, -F和=O,这表明在分层过程中发生了功能化。电导率测量结果表明,蚀刻的MAX相(MX3)的电导率高于相同厚度的分层样品,这可能是由于质子电导率的Grotthuss机制起主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信