Q.H. Liu , H.L. Shi , Q.Z. Han , J. Yang , Y.H. Ren , Y.H. Zhao , L.J. Gong , H. Yang , Z.T. Jiang
{"title":"Improving the thermoelectric performance of the SnS monolayer by Na doping: A theoretical study","authors":"Q.H. Liu , H.L. Shi , Q.Z. Han , J. Yang , Y.H. Ren , Y.H. Zhao , L.J. Gong , H. Yang , Z.T. Jiang","doi":"10.1016/j.flatc.2024.100779","DOIUrl":null,"url":null,"abstract":"<div><div>Aiming at exploring new thermoelectric (TE) materials of high performance, we theoretically calculate the TE transport properties including the Seebeck coefficient, electrical conductance, thermal conductance, power factor, and figure of merit <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span> of the SnS monolayer. Different from the heavy-metal doping, the economical and environment-friendly Na doping is adopted to improve the <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span> of the monolayer SnS. It is shown that the Na doping can increase the maximum <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span> along the armchair and zigzag directions, respectively, and the highest <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span> peak is moved to the proximity of chemical potential <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, which indicates that the corresponding TE device can work at a low bias voltage. As the temperature increases from 300 K to 800 K, the maximum <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span> of the pristine SnS monolayer is increased from 0.89 to 2.26 (from 1.33 to 2.89) along the armchair (zigzag) direction, and the maximum <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span> of the Na-doped one is increased from 1.24 to 2.45 (from 1.44 to 2.86) along the armchair (zigzag) direction. This implies that the Na-doped SnS monolayer can be utilized to design promising TE devices working in a broad temperature scope and at a lower bias voltage.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"49 ","pages":"Article 100779"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001739","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at exploring new thermoelectric (TE) materials of high performance, we theoretically calculate the TE transport properties including the Seebeck coefficient, electrical conductance, thermal conductance, power factor, and figure of merit of the SnS monolayer. Different from the heavy-metal doping, the economical and environment-friendly Na doping is adopted to improve the of the monolayer SnS. It is shown that the Na doping can increase the maximum along the armchair and zigzag directions, respectively, and the highest peak is moved to the proximity of chemical potential , which indicates that the corresponding TE device can work at a low bias voltage. As the temperature increases from 300 K to 800 K, the maximum of the pristine SnS monolayer is increased from 0.89 to 2.26 (from 1.33 to 2.89) along the armchair (zigzag) direction, and the maximum of the Na-doped one is increased from 1.24 to 2.45 (from 1.44 to 2.86) along the armchair (zigzag) direction. This implies that the Na-doped SnS monolayer can be utilized to design promising TE devices working in a broad temperature scope and at a lower bias voltage.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)