Cost-effective and selective determining <1 µm melamine microplastics via the photoelectrochemical properties of Ir-Cu non-hexagonal nanosheets

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Nallin Sharma , Chia-Hung Chi , Deepak Dabur , Andrew Chi-Chang Tsai , Hui-Fen Wu
{"title":"Cost-effective and selective determining <1 µm melamine microplastics via the photoelectrochemical properties of Ir-Cu non-hexagonal nanosheets","authors":"Nallin Sharma ,&nbsp;Chia-Hung Chi ,&nbsp;Deepak Dabur ,&nbsp;Andrew Chi-Chang Tsai ,&nbsp;Hui-Fen Wu","doi":"10.1016/j.flatc.2024.100801","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing health hazards of microplastics has raised an alarming scenario worldwide. Microplastic contaminants are present everywhere and causing unwanted interactions and hence termed as pollutants. Strict studies to explore the involvement of small-size microplastics are need of hour, and highly sensitive probes are required for identification. The present study explores highly sensitive identification of &lt;1 µm melamine microplastic in water sources using non-hexagonal IrCu (NH-IC) nanosheets as a photoelectrochemical (PEC) agent. Synthesis of IrCu nanosheet is carried out via a non-hydrolytic sol–gel process, assisted with the probe-sonication method. The methodology is stringently developed to achieve high PEC response under UV illumination, the current density increases after UV-illumination. Selective identification of melamine was achieved in comparison with other similar-sized microplastics, and particulate count’s measurement showed a high linearity response. The particulate study shows a high linearity response after incubation with the NH-IC nanosheet. The calculated response after melamine microplastic incubation for 10 and 20 min is R<sup>2</sup> 0.9421, 0.9624 and the limit of detection is 0.034 ppm and 0.0028 ppm, respectively.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"49 ","pages":"Article 100801"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001958","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing health hazards of microplastics has raised an alarming scenario worldwide. Microplastic contaminants are present everywhere and causing unwanted interactions and hence termed as pollutants. Strict studies to explore the involvement of small-size microplastics are need of hour, and highly sensitive probes are required for identification. The present study explores highly sensitive identification of <1 µm melamine microplastic in water sources using non-hexagonal IrCu (NH-IC) nanosheets as a photoelectrochemical (PEC) agent. Synthesis of IrCu nanosheet is carried out via a non-hydrolytic sol–gel process, assisted with the probe-sonication method. The methodology is stringently developed to achieve high PEC response under UV illumination, the current density increases after UV-illumination. Selective identification of melamine was achieved in comparison with other similar-sized microplastics, and particulate count’s measurement showed a high linearity response. The particulate study shows a high linearity response after incubation with the NH-IC nanosheet. The calculated response after melamine microplastic incubation for 10 and 20 min is R2 0.9421, 0.9624 and the limit of detection is 0.034 ppm and 0.0028 ppm, respectively.

Abstract Image

通过非六角Ir-Cu纳米片的光电化学特性,经济高效地选择性测定小于1微米的三聚氰胺微塑料
微塑料对健康的危害越来越大,在世界范围内引发了令人担忧的局面。微塑料污染物无处不在,并引起不必要的相互作用,因此被称为污染物。研究微小微塑料的参与需要时间,需要高灵敏度的探针进行识别。本研究利用非六方IrCu (NH-IC)纳米片作为光电化学(PEC)试剂,探索了水源中1 μ m三聚氰胺微塑料的高灵敏度鉴定。采用非水解溶胶-凝胶法制备了IrCu纳米片,并辅以探针-超声法。该方法是为了在紫外光照射下实现高PEC响应而严格开发的,紫外光照射后电流密度增加。与其他类似尺寸的微塑料相比,实现了三聚氰胺的选择性识别,颗粒计数的测量显示出高度的线性响应。颗粒研究表明,与NH-IC纳米片孵育后具有很高的线性响应。三聚氰胺微塑料孵育10和20 min后的计算响应分别为R2 0.9421、0.9624,检出限分别为0.034 ppm和0.0028 ppm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信