Detecting γ-aminobutyric acid and folates in wheat seedlings using hyperspectral imaging

IF 3.9 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Tianwei Guo , Yiwei Wu , Yingxin Zhong , Dandan Li , Chong Xie , Runqiang Yang , Dong Jiang , Qin Zhou , Pei Wang
{"title":"Detecting γ-aminobutyric acid and folates in wheat seedlings using hyperspectral imaging","authors":"Tianwei Guo ,&nbsp;Yiwei Wu ,&nbsp;Yingxin Zhong ,&nbsp;Dandan Li ,&nbsp;Chong Xie ,&nbsp;Runqiang Yang ,&nbsp;Dong Jiang ,&nbsp;Qin Zhou ,&nbsp;Pei Wang","doi":"10.1016/j.jcs.2024.104083","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces the application of hyperspectral imaging (HI) technology for the non-destructive detection of γ-aminobutyric acid (GABA) and folates, which are bioactive compounds in wheat seedlings. Analyzing the GABA and folate content in 210 wheat varieties distributed across China provides an ideal dataset for model prediction. By comparing various preprocessing, filtering, and modeling techniques, predictive models with high accuracy were established. The 1st-GA-PLS model effectively predicts GABA content (RMSEC = 27.887, Rc<sup>2</sup> = 0.803, RMSEP = 25.640, Rp<sup>2</sup> = 0.858, RPD = 2.576), while the S-G-SPA-SVM model achieves very high accuracy in predicting folate content (RMSEC = 9.761, Rc<sup>2</sup> = 0.937, RMSEP = 18.742, Rp<sup>2</sup> = 0.894, RPD = 3.065). Our research provides meaningful insights for the intelligent cultivation of wheat seedlings, offering a valuable tool for precision farming and production of wheat seedlings as functional food ingredients.</div></div>","PeriodicalId":15285,"journal":{"name":"Journal of Cereal Science","volume":"121 ","pages":"Article 104083"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cereal Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0733521024002418","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the application of hyperspectral imaging (HI) technology for the non-destructive detection of γ-aminobutyric acid (GABA) and folates, which are bioactive compounds in wheat seedlings. Analyzing the GABA and folate content in 210 wheat varieties distributed across China provides an ideal dataset for model prediction. By comparing various preprocessing, filtering, and modeling techniques, predictive models with high accuracy were established. The 1st-GA-PLS model effectively predicts GABA content (RMSEC = 27.887, Rc2 = 0.803, RMSEP = 25.640, Rp2 = 0.858, RPD = 2.576), while the S-G-SPA-SVM model achieves very high accuracy in predicting folate content (RMSEC = 9.761, Rc2 = 0.937, RMSEP = 18.742, Rp2 = 0.894, RPD = 3.065). Our research provides meaningful insights for the intelligent cultivation of wheat seedlings, offering a valuable tool for precision farming and production of wheat seedlings as functional food ingredients.

Abstract Image

利用高光谱成像技术检测小麦幼苗中的γ-氨基丁酸和叶酸
介绍了高光谱成像(HI)技术在小麦幼苗中γ-氨基丁酸(GABA)和叶酸等生物活性物质无损检测中的应用。分析中国210个小麦品种的GABA和叶酸含量,为模型预测提供了理想的数据集。通过比较各种预处理、滤波和建模技术,建立了精度较高的预测模型。1 - ga - pls模型预测GABA含量的准确度较高(RMSEC = 27.887, Rc2 = 0.803, RMSEP = 25.640, Rp2 = 0.858, RPD = 2.576), S-G-SPA-SVM模型预测叶酸含量的准确度较高(RMSEC = 9.761, Rc2 = 0.937, RMSEP = 18.742, Rp2 = 0.894, RPD = 3.065)。我们的研究为小麦幼苗的智能栽培提供了有意义的见解,为精准农业和生产小麦幼苗作为功能性食品原料提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cereal Science
Journal of Cereal Science 工程技术-食品科技
CiteScore
7.80
自引率
2.60%
发文量
163
审稿时长
38 days
期刊介绍: The Journal of Cereal Science was established in 1983 to provide an International forum for the publication of original research papers of high standing covering all aspects of cereal science related to the functional and nutritional quality of cereal grains (true cereals - members of the Poaceae family and starchy pseudocereals - members of the Amaranthaceae, Chenopodiaceae and Polygonaceae families) and their products, in relation to the cereals used. The journal also publishes concise and critical review articles appraising the status and future directions of specific areas of cereal science and short communications that present news of important advances in research. The journal aims at topicality and at providing comprehensive coverage of progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信