Application of Golay-based total focusing method using a high-frequency, lead-free, flexible ultrasonic array for inspection of thick non-planar industrial components

IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Elmergue Germano , Morteza Tabatabaeipour , Ehsan Mohseni , David Lines , Charles N. MacLeod , Kwok-Ho Lam , David Hughes , Heather Trodden , Anthony Gachagan
{"title":"Application of Golay-based total focusing method using a high-frequency, lead-free, flexible ultrasonic array for inspection of thick non-planar industrial components","authors":"Elmergue Germano ,&nbsp;Morteza Tabatabaeipour ,&nbsp;Ehsan Mohseni ,&nbsp;David Lines ,&nbsp;Charles N. MacLeod ,&nbsp;Kwok-Ho Lam ,&nbsp;David Hughes ,&nbsp;Heather Trodden ,&nbsp;Anthony Gachagan","doi":"10.1016/j.ndteint.2024.103282","DOIUrl":null,"url":null,"abstract":"<div><div>The compromise between axial resolution and penetration depth in ultrasound imaging poses a challenge for high-frequency ultrasonic arrays, limiting their ability to effectively inspect thick components in industrial applications. In this work, a commercial 20 MHz, 64 element, 1 mm pitch lead-free flexible linear array was characterised in terms of its performance. The array was subsequently evaluated using Golay-coded excitation techniques to enhance the signal-to-noise ratio (SNR) and operability on non-planar thick components. The SNR improvement verification results were acquired with the array deployed on a 100 mm thick flat aluminium test specimen. As expected, an increase in SNR was observed as the Golay code length increased. The imaging strategy employed a combination of Full Matrix Capture (FMC) and Total Focusing Method (TFM) to assess the performance variations between the conventional pulse excitation and Golay-coded excitation. The Golay-based TFM demonstrated superior performance compared to the conventional pulse-based TFM, with an SNR improvement of 4.95 dB when using the full array aperture to inspect the non-planar steel S355 specimen. A sub-aperture selection approach, based on the effect of the array element beam spread, offered additional SNR improvement of up to 8.2 dB. Greater imaging penetration depth was achieved, with an increase of &gt;40 % compared to conventional pulse-based TFM. Thus, for inspection of thick non-planar industrial components using a lead-free high-frequency array, Golay-coded excitation schemes show excellent potential to enhance SNR, penetration depth and imaging quality.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"150 ","pages":"Article 103282"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002470","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The compromise between axial resolution and penetration depth in ultrasound imaging poses a challenge for high-frequency ultrasonic arrays, limiting their ability to effectively inspect thick components in industrial applications. In this work, a commercial 20 MHz, 64 element, 1 mm pitch lead-free flexible linear array was characterised in terms of its performance. The array was subsequently evaluated using Golay-coded excitation techniques to enhance the signal-to-noise ratio (SNR) and operability on non-planar thick components. The SNR improvement verification results were acquired with the array deployed on a 100 mm thick flat aluminium test specimen. As expected, an increase in SNR was observed as the Golay code length increased. The imaging strategy employed a combination of Full Matrix Capture (FMC) and Total Focusing Method (TFM) to assess the performance variations between the conventional pulse excitation and Golay-coded excitation. The Golay-based TFM demonstrated superior performance compared to the conventional pulse-based TFM, with an SNR improvement of 4.95 dB when using the full array aperture to inspect the non-planar steel S355 specimen. A sub-aperture selection approach, based on the effect of the array element beam spread, offered additional SNR improvement of up to 8.2 dB. Greater imaging penetration depth was achieved, with an increase of >40 % compared to conventional pulse-based TFM. Thus, for inspection of thick non-planar industrial components using a lead-free high-frequency array, Golay-coded excitation schemes show excellent potential to enhance SNR, penetration depth and imaging quality.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ndt & E International
Ndt & E International 工程技术-材料科学:表征与测试
CiteScore
7.20
自引率
9.50%
发文量
121
审稿时长
55 days
期刊介绍: NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信