Na Sun , Zhanfeng Hou , Zeshang Jiang , Jieting Geng , Lin Xia
{"title":"Facile modification of sepiolite and its application in wear-resistant and superhydrophobic epoxy coatings by mimicking the structure of shark skin","authors":"Na Sun , Zhanfeng Hou , Zeshang Jiang , Jieting Geng , Lin Xia","doi":"10.1016/j.clay.2024.107642","DOIUrl":null,"url":null,"abstract":"<div><div>Superhydrophobic surfaces have demonstrated significant potential in various fields. Nonetheless, creating durable superhydrophobic surfaces with practical application value remains a major challenge. This study utilizes biomimicry to prepare a series of composites similar to shark skin, which possesses hydrophobic and wear-resistant properties. A dual-coating strategy was developed to create a durable and wear-resistant superhydrophobic surface. This article introduces a novel approach by incorporating chemically modified sepiolite and graphite nanoparticles in a layer-by-layer composite for enhancing wear resistance in epoxy resin coatings. Epoxy resin (EP) was used as the matrix material, graphite nanoparticles (GNP) were incorporated for the wear-resistant layer, and modified superhydrophobic Sepiolite (osSep) particles were utilized for the superhydrophobic layer. Both of these layers could form hydrogen bonds with epoxy resin, leading to a functional coating that offers wear resistance, superhydrophobicity, chemical stability, and self-cleaning properties. This article applies EP@GNP@osSep composites to glass, wood, and stainless steel mesh, imparting excellent superhydrophobic properties, wear resistance, self-cleaning abilities, and anti-staining properties. The superhydrophobic coating prepared in this manuscript can meet the requirements of robustness and superhydrophobicity for various materials, with promising market potential.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"264 ","pages":"Article 107642"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724003909","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Superhydrophobic surfaces have demonstrated significant potential in various fields. Nonetheless, creating durable superhydrophobic surfaces with practical application value remains a major challenge. This study utilizes biomimicry to prepare a series of composites similar to shark skin, which possesses hydrophobic and wear-resistant properties. A dual-coating strategy was developed to create a durable and wear-resistant superhydrophobic surface. This article introduces a novel approach by incorporating chemically modified sepiolite and graphite nanoparticles in a layer-by-layer composite for enhancing wear resistance in epoxy resin coatings. Epoxy resin (EP) was used as the matrix material, graphite nanoparticles (GNP) were incorporated for the wear-resistant layer, and modified superhydrophobic Sepiolite (osSep) particles were utilized for the superhydrophobic layer. Both of these layers could form hydrogen bonds with epoxy resin, leading to a functional coating that offers wear resistance, superhydrophobicity, chemical stability, and self-cleaning properties. This article applies EP@GNP@osSep composites to glass, wood, and stainless steel mesh, imparting excellent superhydrophobic properties, wear resistance, self-cleaning abilities, and anti-staining properties. The superhydrophobic coating prepared in this manuscript can meet the requirements of robustness and superhydrophobicity for various materials, with promising market potential.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...