Adaptation of the psychrophilic Mucor psychrophilus (Mucorales, Mucoromycota) to lower temperatures and under conditions of heat and osmotic shocks

IF 2.9 3区 生物学 Q2 MYCOLOGY
Olga A. Danilova , Elena A. Ianutsevich , Galina A. Kochkina , Vera M. Tereshina
{"title":"Adaptation of the psychrophilic Mucor psychrophilus (Mucorales, Mucoromycota) to lower temperatures and under conditions of heat and osmotic shocks","authors":"Olga A. Danilova ,&nbsp;Elena A. Ianutsevich ,&nbsp;Galina A. Kochkina ,&nbsp;Vera M. Tereshina","doi":"10.1016/j.funbio.2024.101532","DOIUrl":null,"url":null,"abstract":"<div><div>The definitions of psychrophilia and psychrotolerance are based on the optimal temperature of growth (≤15 and 20 °C, respectively), and it is not clear whether differences exist in adaptation mechanisms. We analyzed the composition of osmolytes and membrane lipids of a true psychrophile <em>Mucor psychrophilus</em> during submerged cultivation at 12.5 °C and 4 °C, as well as under heat and osmotic shocks. The main osmolyte at 12.5 °C is trehalose (70 % of the total), whereas at 4 °C, comparable proportions of glycerol, glucose, and trehalose are observed. Under heat shock, the amount of trehalose increases threefold, and osmotic shock leads to an increase of the glycerol level without a reduction in the amount of trehalose. The predominant membrane lipids at both temperatures are non-bilayer phosphatidic acids (about 65 % of the sum) and phosphatidylethanolamines (20–30 %). An increase in the degree of unsaturation and a decrease in the sterols proportion are observed during growth at 4 °C, whereas at 12.5 °C, as well as under heat and osmotic shocks, the changes are insignificant. Similarity of the adaptation mechanisms of the psychrophilic and psychrotolerant fungi indicates the ambiguity of psychrophilia and psychrotolerance definitions.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 2","pages":"Article 101532"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614624001727","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The definitions of psychrophilia and psychrotolerance are based on the optimal temperature of growth (≤15 and 20 °C, respectively), and it is not clear whether differences exist in adaptation mechanisms. We analyzed the composition of osmolytes and membrane lipids of a true psychrophile Mucor psychrophilus during submerged cultivation at 12.5 °C and 4 °C, as well as under heat and osmotic shocks. The main osmolyte at 12.5 °C is trehalose (70 % of the total), whereas at 4 °C, comparable proportions of glycerol, glucose, and trehalose are observed. Under heat shock, the amount of trehalose increases threefold, and osmotic shock leads to an increase of the glycerol level without a reduction in the amount of trehalose. The predominant membrane lipids at both temperatures are non-bilayer phosphatidic acids (about 65 % of the sum) and phosphatidylethanolamines (20–30 %). An increase in the degree of unsaturation and a decrease in the sterols proportion are observed during growth at 4 °C, whereas at 12.5 °C, as well as under heat and osmotic shocks, the changes are insignificant. Similarity of the adaptation mechanisms of the psychrophilic and psychrotolerant fungi indicates the ambiguity of psychrophilia and psychrotolerance definitions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fungal biology
Fungal biology MYCOLOGY-
CiteScore
5.80
自引率
4.00%
发文量
80
审稿时长
49 days
期刊介绍: Fungal Biology publishes original contributions in all fields of basic and applied research involving fungi and fungus-like organisms (including oomycetes and slime moulds). Areas of investigation include biodeterioration, biotechnology, cell and developmental biology, ecology, evolution, genetics, geomycology, medical mycology, mutualistic interactions (including lichens and mycorrhizas), physiology, plant pathology, secondary metabolites, and taxonomy and systematics. Submissions on experimental methods are also welcomed. Priority is given to contributions likely to be of interest to a wide international audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信