Agro-industrial waste utilization in air-cured alkali-activated pavement composites: Properties, micro-structural insights and life cycle impacts

Shriram Marathe , Akhila Sheshadri , Łukasz Sadowski
{"title":"Agro-industrial waste utilization in air-cured alkali-activated pavement composites: Properties, micro-structural insights and life cycle impacts","authors":"Shriram Marathe ,&nbsp;Akhila Sheshadri ,&nbsp;Łukasz Sadowski","doi":"10.1016/j.clema.2024.100281","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the development and performance of agro-industrial waste-based air-cured alkali-activated concrete composites (AC) for sustainable high-strength rigid pavement applications. The calculated amounts of liquid sodium silicate and sodium hydroxide flakes were used with an adequate quantity of water to prepare the alkali-activator solution. Agro-Industrial by-products, including ground granulated blast furnace slag (GGBS), construction and demolition (C&amp;D) waste, and sugarcane bagasse ash (SBA), were utilized to develop AC mixes and the mechanical properties, micro-structural behaviour, and life cycle impacts were studied. Optimized AC mixes containing 50% recycled aggregates (RCA) (with 50% natural coarse aggregates) and 15% SBA (with 85% GGBS) demonstrated superior compressive, splitting-tensile, and flexural strength, while significantly reducing embodied energy and carbon emissions. Microstructural analysis through XRD, SEM, EDAX, and TGA confirmed the formation of stable alumino-silicate hydrate phases, contributing to enhanced mechanical strength performances. The life cycle analysis results indicated considerable environmental benefits compared to traditional Portland Cement based pavement concrete counterparts. This research presents a sustainable solution for pavement infrastructure, aligning with circular economy principles by promoting the reduction of resource consumption and greenhouse gas emissions.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100281"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397624000650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the development and performance of agro-industrial waste-based air-cured alkali-activated concrete composites (AC) for sustainable high-strength rigid pavement applications. The calculated amounts of liquid sodium silicate and sodium hydroxide flakes were used with an adequate quantity of water to prepare the alkali-activator solution. Agro-Industrial by-products, including ground granulated blast furnace slag (GGBS), construction and demolition (C&D) waste, and sugarcane bagasse ash (SBA), were utilized to develop AC mixes and the mechanical properties, micro-structural behaviour, and life cycle impacts were studied. Optimized AC mixes containing 50% recycled aggregates (RCA) (with 50% natural coarse aggregates) and 15% SBA (with 85% GGBS) demonstrated superior compressive, splitting-tensile, and flexural strength, while significantly reducing embodied energy and carbon emissions. Microstructural analysis through XRD, SEM, EDAX, and TGA confirmed the formation of stable alumino-silicate hydrate phases, contributing to enhanced mechanical strength performances. The life cycle analysis results indicated considerable environmental benefits compared to traditional Portland Cement based pavement concrete counterparts. This research presents a sustainable solution for pavement infrastructure, aligning with circular economy principles by promoting the reduction of resource consumption and greenhouse gas emissions.

Abstract Image

农工废弃物在气固化碱活化路面复合材料中的利用:性能、微观结构洞察和生命周期影响
本研究探讨了农工废弃物基气固化碱活化混凝土复合材料(AC)的发展和性能,用于可持续的高强度刚性路面应用。将计算出的水玻璃液和氢氧化钠薄片与适量的水混合,制备碱活化剂溶液。利用农业工业副产品,包括磨碎的粒状高炉渣(GGBS)、建筑和拆除(C&;D)废物和甘蔗甘蔗渣灰(SBA)来开发AC混合物,并研究了其力学性能、微观结构行为和生命周期影响。优化后的AC混合料含有50%的再生骨料(RCA)(含50%的天然粗骨料)和15%的SBA(含85%的GGBS),表现出优异的抗压、劈裂拉伸和抗弯强度,同时显著降低了隐含能量和碳排放。通过XRD、SEM、EDAX、TGA等微观结构分析,证实形成了稳定的硅酸铝水合物相,提高了机械强度性能。生命周期分析结果表明,与传统的波特兰水泥路面混凝土相比,该材料具有相当大的环境效益。本研究提出了一种可持续的道路基础设施解决方案,通过促进减少资源消耗和温室气体排放,与循环经济原则保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信