{"title":"Practical considerations for implementing robust-to-early termination model predictive control","authors":"Mohsen Amiri, Mehdi Hosseinzadeh","doi":"10.1016/j.sysconle.2024.106018","DOIUrl":null,"url":null,"abstract":"<div><div>Model Predictive Control (MPC) is widely used to achieve performance objectives, while enforcing operational and safety constraints. Despite its high performance, MPC often demands significant computational resources, making it challenging to implement in systems with limited computing capacity. A recent approach to address this challenge is to use the Robust-to-Early Termination (REAP) strategy. At any time instant, REAP converts the MPC problem into the evolution of a virtual dynamical system whose trajectory converges to the optimal solution, and provides guaranteed sub-optimal and feasible solution whenever its evolution is terminated due to limited computational power. REAP has been introduced as a continuous-time scheme and its theoretical properties have been derived under the assumption that it performs all the computations in continuous time. However, REAP should be practically implemented in discrete-time. This paper focuses on the discrete-time implementation of REAP, exploring conditions under which anytime feasibility and convergence properties are maintained when the computations are performed in discrete time. The proposed methodology is validated and evaluated through extensive simulation and experimental studies.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"196 ","pages":"Article 106018"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124003062","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Model Predictive Control (MPC) is widely used to achieve performance objectives, while enforcing operational and safety constraints. Despite its high performance, MPC often demands significant computational resources, making it challenging to implement in systems with limited computing capacity. A recent approach to address this challenge is to use the Robust-to-Early Termination (REAP) strategy. At any time instant, REAP converts the MPC problem into the evolution of a virtual dynamical system whose trajectory converges to the optimal solution, and provides guaranteed sub-optimal and feasible solution whenever its evolution is terminated due to limited computational power. REAP has been introduced as a continuous-time scheme and its theoretical properties have been derived under the assumption that it performs all the computations in continuous time. However, REAP should be practically implemented in discrete-time. This paper focuses on the discrete-time implementation of REAP, exploring conditions under which anytime feasibility and convergence properties are maintained when the computations are performed in discrete time. The proposed methodology is validated and evaluated through extensive simulation and experimental studies.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.