Palladium nanoparticles immobilized on magnetic MCM-41 surface modified with aminomethylpyridine: As a recyclable palladium nanocatalyst for carbon-carbon cross-coupling reactions

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Zeinab Shirvandi, Amin Rostami
{"title":"Palladium nanoparticles immobilized on magnetic MCM-41 surface modified with aminomethylpyridine: As a recyclable palladium nanocatalyst for carbon-carbon cross-coupling reactions","authors":"Zeinab Shirvandi,&nbsp;Amin Rostami","doi":"10.1016/j.apsadv.2024.100688","DOIUrl":null,"url":null,"abstract":"<div><div>A new catalyst was synthesized by first immobilizing 2-amino-6-methylpyridine on a magnetic mesoporous surface (MMCM-41), followed by adding palladium nanoparticles on the modified surface. The synthesized catalyst was subjected to various characterization techniques, including Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), inductively coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Characterization studies showed spherical nanoparticles in the synthesized nanocomposite (MMCM-41@APy-Pd). These particles exhibited a high BET surface area (127.62 m<sup>2</sup> g<sup>−1</sup>), an average pore size of 1.48 nm, and a significant pore volume (0.143 cm<sup>3</sup> g<sup>−1</sup>). These properties made MMCM-41@APy-Pd an effective magnetic nanocatalyst for Suzuki-Miyaura and Mizoroki-Heck coupling reactions. An extensive range of aryl halides, which have both electron-withdrawing and electron-donating groups, were investigated and showed high to satisfactory efficiency in the Suzuki and Heck cross-coupling reactions. The magnetic nanocatalyst demonstrated the ability to be employed for up to five consecutive applications with minimal decrease in its catalytic efficiency and could be effortlessly recovered from the reaction mixture.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100688"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924001168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A new catalyst was synthesized by first immobilizing 2-amino-6-methylpyridine on a magnetic mesoporous surface (MMCM-41), followed by adding palladium nanoparticles on the modified surface. The synthesized catalyst was subjected to various characterization techniques, including Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), inductively coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Characterization studies showed spherical nanoparticles in the synthesized nanocomposite (MMCM-41@APy-Pd). These particles exhibited a high BET surface area (127.62 m2 g−1), an average pore size of 1.48 nm, and a significant pore volume (0.143 cm3 g−1). These properties made MMCM-41@APy-Pd an effective magnetic nanocatalyst for Suzuki-Miyaura and Mizoroki-Heck coupling reactions. An extensive range of aryl halides, which have both electron-withdrawing and electron-donating groups, were investigated and showed high to satisfactory efficiency in the Suzuki and Heck cross-coupling reactions. The magnetic nanocatalyst demonstrated the ability to be employed for up to five consecutive applications with minimal decrease in its catalytic efficiency and could be effortlessly recovered from the reaction mixture.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信