Enhancing thermoelectric properties of ScN films through twin domains

IF 7.5 Q1 CHEMISTRY, PHYSICAL
J. More-Chevalier , U.D. Wdowik , J. Martan , T. Baba , S. Cichoň , P. Levinský , D. Legut , E. de Prado , P. Hruška , J. Pokorný , J. Bulíř , C. Beltrami , T. Mori , M. Novotný , I. Gregora , L. Fekete , L. Volfová , J. Lančok
{"title":"Enhancing thermoelectric properties of ScN films through twin domains","authors":"J. More-Chevalier ,&nbsp;U.D. Wdowik ,&nbsp;J. Martan ,&nbsp;T. Baba ,&nbsp;S. Cichoň ,&nbsp;P. Levinský ,&nbsp;D. Legut ,&nbsp;E. de Prado ,&nbsp;P. Hruška ,&nbsp;J. Pokorný ,&nbsp;J. Bulíř ,&nbsp;C. Beltrami ,&nbsp;T. Mori ,&nbsp;M. Novotný ,&nbsp;I. Gregora ,&nbsp;L. Fekete ,&nbsp;L. Volfová ,&nbsp;J. Lančok","doi":"10.1016/j.apsadv.2024.100674","DOIUrl":null,"url":null,"abstract":"<div><div>Tailoring thermoelectric properties of ScN-based materials is of vital importance for their application, particularly at high operating temperatures. Here, we report on the thermoelectric properties of the ScN layers deposited on MgO (001) substrates by the DC reactive magnetron sputtering. The microstructure of the produced thin films is examined by X-ray diffraction and atomic force microscopy, while their chemical composition and contamination by defects are determined by X-ray photoelectron spectroscopy. The effect of temperature on the phonon properties of ScN layers, having implications for their thermoelectric properties, is explored by Raman spectroscopy. The results of our experiments are confronted with those following from the first-principles studies. We find that the ScN/MgO(001) layers with twin-domain structure reveal enhanced thermoelectric properties at elevated temperature as compared to those measured for almost defect- and domain-free layers, namely, enlarged Seebeck coefficient by about 30% and over two and a half times increased figure of merit at 800 K. Therefore, structural twin domains in thin ScN film appear to be a simple and rather stable solution for the improvement of its thermoelectric properties at elevated temperatures.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100674"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924001028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tailoring thermoelectric properties of ScN-based materials is of vital importance for their application, particularly at high operating temperatures. Here, we report on the thermoelectric properties of the ScN layers deposited on MgO (001) substrates by the DC reactive magnetron sputtering. The microstructure of the produced thin films is examined by X-ray diffraction and atomic force microscopy, while their chemical composition and contamination by defects are determined by X-ray photoelectron spectroscopy. The effect of temperature on the phonon properties of ScN layers, having implications for their thermoelectric properties, is explored by Raman spectroscopy. The results of our experiments are confronted with those following from the first-principles studies. We find that the ScN/MgO(001) layers with twin-domain structure reveal enhanced thermoelectric properties at elevated temperature as compared to those measured for almost defect- and domain-free layers, namely, enlarged Seebeck coefficient by about 30% and over two and a half times increased figure of merit at 800 K. Therefore, structural twin domains in thin ScN film appear to be a simple and rather stable solution for the improvement of its thermoelectric properties at elevated temperatures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信