Mechanistic study of oxidative chemical vapor deposition of polypyrrole: Effects of the inert gas and deposition time

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Fika Fauzi , Ranjita K. Bose
{"title":"Mechanistic study of oxidative chemical vapor deposition of polypyrrole: Effects of the inert gas and deposition time","authors":"Fika Fauzi ,&nbsp;Ranjita K. Bose","doi":"10.1016/j.apsadv.2024.100673","DOIUrl":null,"url":null,"abstract":"<div><div>Oxidative chemical vapor deposition (oCVD) is a method for synthesizing uniform and conformal thin films of conductive polymers without any solvents. The structure and properties of oCVD films can be tuned by controlling the process parameters such as the flow rates of the vapor-phase reactants, substrate temperatures, chamber pressure, inert gas flow rate, and deposition time. Although the first three parameters have been studied, the impact of the last two remains as yet unexplored. This study examines how the flow rate of nitrogen gas, an inert gas that assists the oxidant delivered into the reactor chamber, and the deposition time affect the structure and properties of oCVD film. Polypyrrole (PPy) was chosen in this study due to its versatility for many applications. The results showed that nitrogen gas primarily acts as an oxidant carrier gas, impacting the distribution of the oxidant adsorbed onto the substrates. This leads to varying structure and properties of the resultant PPy. Furthermore, nitrogen flow rate and deposition time affect the thickness and conductivity of PPy differently. Increasing nitrogen flow rate significantly improves the distribution of the oxidant, but it can also result in excessive polaronic defects. These defects can severely deteriorate the polymeric structure and reduce the conductivity. Meanwhile, extending the deposition time increases the film thickness linearly due to longer reaction time and initially enhances conductivity until it reaches a plateau. These insights can be beneficial not only for the oCVD method but also for other types of vapor-based polymerization techniques.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100673"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924001016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative chemical vapor deposition (oCVD) is a method for synthesizing uniform and conformal thin films of conductive polymers without any solvents. The structure and properties of oCVD films can be tuned by controlling the process parameters such as the flow rates of the vapor-phase reactants, substrate temperatures, chamber pressure, inert gas flow rate, and deposition time. Although the first three parameters have been studied, the impact of the last two remains as yet unexplored. This study examines how the flow rate of nitrogen gas, an inert gas that assists the oxidant delivered into the reactor chamber, and the deposition time affect the structure and properties of oCVD film. Polypyrrole (PPy) was chosen in this study due to its versatility for many applications. The results showed that nitrogen gas primarily acts as an oxidant carrier gas, impacting the distribution of the oxidant adsorbed onto the substrates. This leads to varying structure and properties of the resultant PPy. Furthermore, nitrogen flow rate and deposition time affect the thickness and conductivity of PPy differently. Increasing nitrogen flow rate significantly improves the distribution of the oxidant, but it can also result in excessive polaronic defects. These defects can severely deteriorate the polymeric structure and reduce the conductivity. Meanwhile, extending the deposition time increases the film thickness linearly due to longer reaction time and initially enhances conductivity until it reaches a plateau. These insights can be beneficial not only for the oCVD method but also for other types of vapor-based polymerization techniques.

Abstract Image

聚吡咯氧化化学气相沉积的机理研究:惰性气体和沉积时间的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信