Application of EPR spectroscopy method for comparative analysis of structural damage accumulation kinetics in two-phase lithium-containing ceramics

Q2 Engineering
Dmitriy I. Shlimas , Daryn B. Borgekov , Artem L. Kozlovskiy
{"title":"Application of EPR spectroscopy method for comparative analysis of structural damage accumulation kinetics in two-phase lithium-containing ceramics","authors":"Dmitriy I. Shlimas ,&nbsp;Daryn B. Borgekov ,&nbsp;Artem L. Kozlovskiy","doi":"10.1016/j.omx.2024.100387","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study is to determine the differences in the damaged layer degradation kinetics in two-phase lithium-containing ceramics based on Li<sub>2</sub>ZrO<sub>3</sub> and Li<sub>4</sub>SiO<sub>4</sub> compounds in the case of irradiation with protons and helium ions, simulating the gas swelling and blistering processes, as well as the accumulation of radiolysis products in the damaged layer. During the conducted studies it was established that in the case of proton irradiation, the dominant role at fluences of 10<sup>15</sup>–10<sup>17</sup> cm<sup>−2</sup> is played by oxygen vacancies, the change in the concentration of which upon reaching critical values causes a decrease in the thermophysical properties, and disordering of the damaged layer. In this case, the accumulation of radiolysis products in the form of HC<sub>2</sub> – and Zr<sup>3+</sup> -defects in the structure of the damaged layer is observed at fluences of 5 × 10<sup>17</sup> cm<sup>−2</sup>, while when irradiated with He<sup>2+</sup> ions, the formation of these types of HC<sub>2</sub> – and Zr<sup>3+</sup> -defects is observed at a fluence of 10<sup>17</sup> cm<sup>−2</sup>. Comparison of the concentration dependences of defects in the damaged layer on the atomic displacement value under irradiation with protons and He<sup>2+</sup> ions revealed that the formation of oxygen vacancies under irradiation with He<sup>2+</sup> ions is more intense than in the case of irradiation with protons, which in turn results in more pronounced processes of accumulation of radiolysis products in the case of high-dose irradiation.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"25 ","pages":"Article 100387"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147824000998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to determine the differences in the damaged layer degradation kinetics in two-phase lithium-containing ceramics based on Li2ZrO3 and Li4SiO4 compounds in the case of irradiation with protons and helium ions, simulating the gas swelling and blistering processes, as well as the accumulation of radiolysis products in the damaged layer. During the conducted studies it was established that in the case of proton irradiation, the dominant role at fluences of 1015–1017 cm−2 is played by oxygen vacancies, the change in the concentration of which upon reaching critical values causes a decrease in the thermophysical properties, and disordering of the damaged layer. In this case, the accumulation of radiolysis products in the form of HC2 – and Zr3+ -defects in the structure of the damaged layer is observed at fluences of 5 × 1017 cm−2, while when irradiated with He2+ ions, the formation of these types of HC2 – and Zr3+ -defects is observed at a fluence of 1017 cm−2. Comparison of the concentration dependences of defects in the damaged layer on the atomic displacement value under irradiation with protons and He2+ ions revealed that the formation of oxygen vacancies under irradiation with He2+ ions is more intense than in the case of irradiation with protons, which in turn results in more pronounced processes of accumulation of radiolysis products in the case of high-dose irradiation.
应用 EPR 光谱法比较分析两相含锂陶瓷的结构损伤累积动力学
本研究的目的是确定基于Li2ZrO3和Li4SiO4化合物的两相含锂陶瓷在质子和氦离子照射下损伤层降解动力学的差异,模拟气体膨胀和起泡过程,以及辐射分解产物在损伤层中的积累。在进行的研究中确定,在质子辐照的情况下,氧空位在1015-1017 cm−2的影响下起主导作用,氧空位的浓度在达到临界值时发生变化,导致热物理性质下降,并使受损层无序。在这种情况下,辐射分解产物以HC2 -和Zr3+缺陷的形式在受损层的结构中积累,在5 × 1017 cm−2的影响下观察到,而当He2+离子照射时,在1017 cm−2的影响下观察到这些类型的HC2 -和Zr3+缺陷的形成。对比损伤层中缺陷对质子和He2+离子辐照下原子位移值的浓度依赖性,发现He2+离子辐照下氧空位的形成比质子辐照下更强烈,从而导致高剂量辐照下放射性溶解产物的积累过程更明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Materials: X
Optical Materials: X Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
73
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信