Cognitive performance and differentiation of B-SNIP psychosis Biotypes: Algorithmic Diagnostics for Efficient Prescription of Treatments (ADEPT) - 2

Q2 Medicine
Brett A. Clementz , Ishanu Chattopadhyay , S. Kristian Hill , Jennifer E. McDowell , Sarah K. Keedy , David A. Parker , Rebekah L. Trotti , Elena I. Ivleva , Matcheri S. Keshavan , Elliot S. Gershon , Godfrey D. Pearlson , Carol A. Tamminga , Robert D. Gibbons
{"title":"Cognitive performance and differentiation of B-SNIP psychosis Biotypes: Algorithmic Diagnostics for Efficient Prescription of Treatments (ADEPT) - 2","authors":"Brett A. Clementz ,&nbsp;Ishanu Chattopadhyay ,&nbsp;S. Kristian Hill ,&nbsp;Jennifer E. McDowell ,&nbsp;Sarah K. Keedy ,&nbsp;David A. Parker ,&nbsp;Rebekah L. Trotti ,&nbsp;Elena I. Ivleva ,&nbsp;Matcheri S. Keshavan ,&nbsp;Elliot S. Gershon ,&nbsp;Godfrey D. Pearlson ,&nbsp;Carol A. Tamminga ,&nbsp;Robert D. Gibbons","doi":"10.1016/j.bionps.2024.100117","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The B-SNIP consortium validated neurobiologically defined psychosis Biotypes (BT1, BT2, BT3) using cognitive and psychophysiological measures. B-SNIP’s biomarker panel is not practical for most settings. Previously, B-SNIP developed an efficient classifier of Biotypes using only clinical assessments (called ADEPT-CLIN) with acceptable accuracy (∼.81). Adding cognitive performance may improve ADEPT’s performance.</div></div><div><h3>Method</h3><div>Clinical assessments from ADEPT-CLIN plus 18 cognitive measures from 1907 individuals with a B-SNIP psychosis Biotype were used to create an additional diagnostic algorithm called ADEPT-COG. Extremely randomized trees were used to create this low burden classifier.</div></div><div><h3>Results</h3><div>Total Biotype classification accuracy peaked at 94.6 % with 65 items. A reduced set of 18 items showed 90.5 % accuracy. Only 9–10 items achieved a one-vs-all (e.g., BT1 or not) accuracy of ∼.95, considerably better than using clinical assessments alone. The top discriminators of psychosis Biotypes were antisaccade proportion correct, BACS total, symbol coding, antisaccade correct response latency, verbal memory, digit sequencing, stop signal reaction times, stop signal proportion correct, Tower of London, and WRAT Reading. Except for antisaccade proportion correct and Tower of London, there was no overlap of the top discriminating items for B-SNIP Biotypes and DSM psychosis categories.</div></div><div><h3>Conclusions</h3><div>This low-burden algorithm using clinical and cognitive measures achieved high classification accuracy and can support Biotype-specific etiological and treatment investigations in clinical and research environments. It may be especially useful for clinical trials.</div></div>","PeriodicalId":52767,"journal":{"name":"Biomarkers in Neuropsychiatry","volume":"12 ","pages":"Article 100117"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarkers in Neuropsychiatry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666144624000352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

The B-SNIP consortium validated neurobiologically defined psychosis Biotypes (BT1, BT2, BT3) using cognitive and psychophysiological measures. B-SNIP’s biomarker panel is not practical for most settings. Previously, B-SNIP developed an efficient classifier of Biotypes using only clinical assessments (called ADEPT-CLIN) with acceptable accuracy (∼.81). Adding cognitive performance may improve ADEPT’s performance.

Method

Clinical assessments from ADEPT-CLIN plus 18 cognitive measures from 1907 individuals with a B-SNIP psychosis Biotype were used to create an additional diagnostic algorithm called ADEPT-COG. Extremely randomized trees were used to create this low burden classifier.

Results

Total Biotype classification accuracy peaked at 94.6 % with 65 items. A reduced set of 18 items showed 90.5 % accuracy. Only 9–10 items achieved a one-vs-all (e.g., BT1 or not) accuracy of ∼.95, considerably better than using clinical assessments alone. The top discriminators of psychosis Biotypes were antisaccade proportion correct, BACS total, symbol coding, antisaccade correct response latency, verbal memory, digit sequencing, stop signal reaction times, stop signal proportion correct, Tower of London, and WRAT Reading. Except for antisaccade proportion correct and Tower of London, there was no overlap of the top discriminating items for B-SNIP Biotypes and DSM psychosis categories.

Conclusions

This low-burden algorithm using clinical and cognitive measures achieved high classification accuracy and can support Biotype-specific etiological and treatment investigations in clinical and research environments. It may be especially useful for clinical trials.
B-SNIP 精神病生物类型的认知表现和区分:高效治疗处方算法诊断(ADEPT) - 2
目标B-SNIP联盟利用认知和心理生理测量方法验证了神经生物学定义的精神病生物类型(BT1、BT2、BT3)。B-SNIP 的生物标记物面板在大多数情况下并不实用。此前,B-SNIP 仅使用临床评估(称为 ADEPT-CLIN)就开发出了一种高效的生物类型分类器,其准确性可接受(∼.81)。方法使用 ADEPT-CLIN 的临床评估结果和 1907 名 B-SNIP 精神病生物类型患者的 18 项认知测量结果,创建名为 ADEPT-COG 的附加诊断算法。结果65个项目的Biotype总分类准确率达到94.6%。减少 18 个项目后,准确率为 90.5%。只有 9-10 个项目的单项对全项(如 BT1 或非 BT1)准确率达到了 ∼.95,大大高于仅使用临床评估的准确率。对精神病生物类型的判别能力最强的是反施法正确率、BACS总分、符号编码、反施法正确反应潜伏期、言语记忆、数字排序、停止信号反应时间、停止信号正确率、伦敦塔和WRAT阅读。除了反施法正确率和伦敦塔外,B-SNIP 生物类型和 DSM 精神病类别的最高判别项目没有重叠。结论这种使用临床和认知测量的低负担算法达到了很高的分类准确性,可以支持临床和研究环境中针对生物类型的病因学和治疗调查。它可能对临床试验特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomarkers in Neuropsychiatry
Biomarkers in Neuropsychiatry Medicine-Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
12
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信