Optimizing transparent photovoltaic integration with battery energy storage systems in greenhouse: a daily light integral-constrained economic analysis considering BESS degradation

IF 4.2 Q2 ENERGY & FUELS
Mohammadreza Gholami , A. Arefi , M.E.H. Chowdhury , L. Ben-Brahim , S.M. Muyeen , IEEE Fellow Member
{"title":"Optimizing transparent photovoltaic integration with battery energy storage systems in greenhouse: a daily light integral-constrained economic analysis considering BESS degradation","authors":"Mohammadreza Gholami ,&nbsp;A. Arefi ,&nbsp;M.E.H. Chowdhury ,&nbsp;L. Ben-Brahim ,&nbsp;S.M. Muyeen ,&nbsp;IEEE Fellow Member","doi":"10.1016/j.ref.2025.100679","DOIUrl":null,"url":null,"abstract":"<div><div>Greenhouses provide controlled environments for crop cultivation, and integrating semi transparent photovoltaic (STPV) panels offers the dual benefits of generating renewable energy while facilitating natural light penetration for photosynthesis. This study conducts a feasibility analysis of integrating Battery Energy Storage Systems (BESSs) with STPV systems in greenhouse agriculture, considering the Daily Light Integral (DLI) requirement for different crops as the primary constraint. Employing an enhanced Firefly Algorithm (FA) to optimize the PV cover ratio and BESS capacity, the analysis aims to maximize the Net Present Value (NPV) over a 25-year period, serving as the primary economic parameter. By incorporating DLI requirements for various crop types, the study ensures optimal crop growth while maximizing electricity generation. To ensure realistic long-term projections, the analysis incorporates BESS degradation over the 25-year period, accounting for capacity loss and efficiency reduction in energy storage. The results reveal the significant impact of crop type, with various required DLI , and transparency factor on optimized BESS and consequently the NPV of the project. Simulation results show that for crops with high DLI requirements, the feasible range of PVR% in the greenhouse varies from 42 % to 91 %, depending on the STPV’s transmittance factor. Additionally, the study reveals that initial negative revenue is common across all cases, with the highest NPV achieved at $1,331,340 for crops with low DLI requirements and a BESS capacity of 216 kW.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"53 ","pages":"Article 100679"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008425000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Greenhouses provide controlled environments for crop cultivation, and integrating semi transparent photovoltaic (STPV) panels offers the dual benefits of generating renewable energy while facilitating natural light penetration for photosynthesis. This study conducts a feasibility analysis of integrating Battery Energy Storage Systems (BESSs) with STPV systems in greenhouse agriculture, considering the Daily Light Integral (DLI) requirement for different crops as the primary constraint. Employing an enhanced Firefly Algorithm (FA) to optimize the PV cover ratio and BESS capacity, the analysis aims to maximize the Net Present Value (NPV) over a 25-year period, serving as the primary economic parameter. By incorporating DLI requirements for various crop types, the study ensures optimal crop growth while maximizing electricity generation. To ensure realistic long-term projections, the analysis incorporates BESS degradation over the 25-year period, accounting for capacity loss and efficiency reduction in energy storage. The results reveal the significant impact of crop type, with various required DLI , and transparency factor on optimized BESS and consequently the NPV of the project. Simulation results show that for crops with high DLI requirements, the feasible range of PVR% in the greenhouse varies from 42 % to 91 %, depending on the STPV’s transmittance factor. Additionally, the study reveals that initial negative revenue is common across all cases, with the highest NPV achieved at $1,331,340 for crops with low DLI requirements and a BESS capacity of 216 kW.
温室透明光伏与电池储能系统集成优化:考虑BESS退化的日光积分约束经济分析
温室为作物种植提供了可控的环境,集成半透明光伏(STPV)面板提供了产生可再生能源的双重好处,同时促进了光合作用的自然光穿透。本研究以不同作物的日光照积分(DLI)需求为主要约束条件,对温室农业中电池储能系统(bess)与STPV系统集成的可行性进行了分析。采用改进的萤火虫算法(FA)来优化光伏覆盖率和BESS容量,该分析旨在最大化25年期间的净现值(NPV),作为主要的经济参数。通过结合不同作物类型的DLI要求,该研究确保了作物的最佳生长,同时最大限度地提高了发电量。为了确保现实的长期预测,分析纳入了BESS在25年期间的退化,考虑到储能的容量损失和效率降低。结果表明,作物类型、所需的各种DLI和透明度因子对优化的BESS以及项目的净现值有显著影响。模拟结果表明,对于DLI要求较高的作物,根据STPV的透光系数不同,温室内PVR%的可行范围在42% ~ 91%之间。此外,研究表明,在所有情况下,初始负收入都是常见的,对于DLI要求低、BESS容量为216千瓦的作物,NPV最高,为1,331,340美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信