{"title":"Logistic damping effect in a chemotaxis system with density-suppressed motility and indirect signal consumption","authors":"Quanyong Zhao, Jinrong Wang","doi":"10.1016/j.nonrwa.2024.104314","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the following chemotaxis model <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mrow><mo>(</mo><mi>φ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mi>w</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>δ</mi><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> with smooth boundary, where the parameters <span><math><mi>δ</mi></math></span>, <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>∈</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><mi>l</mi><mo>></mo><mn>1</mn></mrow></math></span>. The positive motility function satisfies <span><math><mrow><mi>φ</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, and the purpose of this paper is to weaken the restriction on <span><math><mi>l</mi></math></span> which ensures the existence of global bounded solutions Li et al. (2022). It was shown that when <span><math><mrow><mi>n</mi><mo>≤</mo><mn>3</mn></mrow></math></span>, there exists a global bounded classical solution for all <span><math><mrow><mi>l</mi><mo>></mo><mn>1</mn></mrow></math></span>. When <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, then we concluded that the system admits a global bounded classical solution for all <span><math><mrow><mi>l</mi><mo>></mo><mn>2</mn></mrow></math></span>, and that the sufficiently large <span><math><mi>μ</mi></math></span> can ensure the existence of global bounded solutions if <span><math><mrow><mi>l</mi><mo>=</mo><mn>2</mn></mrow></math></span>. Moreover, we also studied the large time behavior of solutions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104314"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002530","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the following chemotaxis model under homogeneous Neumann boundary conditions in a bounded domain with smooth boundary, where the parameters , , and . The positive motility function satisfies , and the purpose of this paper is to weaken the restriction on which ensures the existence of global bounded solutions Li et al. (2022). It was shown that when , there exists a global bounded classical solution for all . When , then we concluded that the system admits a global bounded classical solution for all , and that the sufficiently large can ensure the existence of global bounded solutions if . Moreover, we also studied the large time behavior of solutions.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.