Synthesis of TiO2-g-C3N4 for efficient photocatalytic degradation of Congo Red dye

IF 5.2 2区 化学 Q1 CHEMISTRY, APPLIED
Muhammad Saeed , Humaira Asghar , Iltaf Khan , Nadia Akram , Muhammad Usman
{"title":"Synthesis of TiO2-g-C3N4 for efficient photocatalytic degradation of Congo Red dye","authors":"Muhammad Saeed ,&nbsp;Humaira Asghar ,&nbsp;Iltaf Khan ,&nbsp;Nadia Akram ,&nbsp;Muhammad Usman","doi":"10.1016/j.cattod.2024.115154","DOIUrl":null,"url":null,"abstract":"<div><div>Heterogeneous photocatalysis is an efficient, cost effective and promising approach for pollution control and environmental remediation, however, the fast recombination of excitons inhibits the practical applications of photocatalysis. The construction of heterojunction is a viable solution that reduces the recombination of excitons by transfer of charge carriers resulting in improved catalytic performance. Here, the fabrication of a sunlight-active TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> photocatalyst by the hydrothermal process for the degradation of Congo red dye is reported. After characterization, TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> heterojunction was employed as a photocatalyst for the sunlight-light-assisted photodegradation of Congo red dye. The fabricated g-C<sub>3</sub>N<sub>4</sub> and TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> exhibited 52 % and 100 % photodegradation of 50 mL (100 mg/L) of Congo red dye by irradiation in sunlight for 180 min, respectively. The hydroxyl radicals were major species involved in the photodegradation of Congo red dye.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"447 ","pages":"Article 115154"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124006485","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous photocatalysis is an efficient, cost effective and promising approach for pollution control and environmental remediation, however, the fast recombination of excitons inhibits the practical applications of photocatalysis. The construction of heterojunction is a viable solution that reduces the recombination of excitons by transfer of charge carriers resulting in improved catalytic performance. Here, the fabrication of a sunlight-active TiO2-g-C3N4 photocatalyst by the hydrothermal process for the degradation of Congo red dye is reported. After characterization, TiO2-g-C3N4 heterojunction was employed as a photocatalyst for the sunlight-light-assisted photodegradation of Congo red dye. The fabricated g-C3N4 and TiO2-g-C3N4 exhibited 52 % and 100 % photodegradation of 50 mL (100 mg/L) of Congo red dye by irradiation in sunlight for 180 min, respectively. The hydroxyl radicals were major species involved in the photodegradation of Congo red dye.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Today
Catalysis Today 化学-工程:化工
CiteScore
11.50
自引率
3.80%
发文量
573
审稿时长
2.9 months
期刊介绍: Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues. Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信