Sandeep Puri , Andrew K. Gillespie , Ian Jones , Cuikun Lin , Ryan Weed , Robert V. Duncan
{"title":"Simulation and experimental analysis of aerogel's attenuation for high-energy alpha particles in fission-fusion fragment rocket applications","authors":"Sandeep Puri , Andrew K. Gillespie , Ian Jones , Cuikun Lin , Ryan Weed , Robert V. Duncan","doi":"10.1016/j.net.2024.08.026","DOIUrl":null,"url":null,"abstract":"<div><div>Emerging studies are geared toward exploring new methods of nuclear rocket propulsion to provide more efficient space transit beyond Earth's orbit. One method is to employ a Fission Fragment Rocket Engine utilizing fissionable layers embedded in a low-density aerogel. A quantitative understanding of particle attenuation is essential for developing a functional prototype that permits fission fragments to escape the layers and contribute to specific impulse rather than being attenuated and generating waste heat. In this investigation, the MCNP code was used to theoretically analyze the attenuation of alpha particles from <sup>241</sup>Am sources within aerogel materials. Simulations were conducted on aerogels with various densities and compositions. These simulations aimed to predict the expected intensity of alpha particles reaching a detector. CR-39 was employed as a Plastic Nuclear Track Detector to assess particle attenuation by the aerogels. The experimental and simulation results show that the threshold areal density of atoms was found to be high 10<sup>20</sup> atoms/cm<sup>2</sup> for the three materials studied in this project.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 1","pages":"Article 103157"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573324004054","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging studies are geared toward exploring new methods of nuclear rocket propulsion to provide more efficient space transit beyond Earth's orbit. One method is to employ a Fission Fragment Rocket Engine utilizing fissionable layers embedded in a low-density aerogel. A quantitative understanding of particle attenuation is essential for developing a functional prototype that permits fission fragments to escape the layers and contribute to specific impulse rather than being attenuated and generating waste heat. In this investigation, the MCNP code was used to theoretically analyze the attenuation of alpha particles from 241Am sources within aerogel materials. Simulations were conducted on aerogels with various densities and compositions. These simulations aimed to predict the expected intensity of alpha particles reaching a detector. CR-39 was employed as a Plastic Nuclear Track Detector to assess particle attenuation by the aerogels. The experimental and simulation results show that the threshold areal density of atoms was found to be high 1020 atoms/cm2 for the three materials studied in this project.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development