Role of carbon bioavailability in enhancing carbon sequestration and humification in black soldier fly larvae body and frass during chicken manure composting

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Liwen Mai , Dingmei Wang , Jiacong Lin , Yehao Yan , He Liu , Minmin Cai , Xia Yang , Qinfen Li
{"title":"Role of carbon bioavailability in enhancing carbon sequestration and humification in black soldier fly larvae body and frass during chicken manure composting","authors":"Liwen Mai ,&nbsp;Dingmei Wang ,&nbsp;Jiacong Lin ,&nbsp;Yehao Yan ,&nbsp;He Liu ,&nbsp;Minmin Cai ,&nbsp;Xia Yang ,&nbsp;Qinfen Li","doi":"10.1016/j.eti.2025.104036","DOIUrl":null,"url":null,"abstract":"<div><div>The rising demand for poultry products has resulted in increased chicken manure output and environmental pollution. Cultivation of black soldier fly larvae (BSFL) in chicken manure offers an effective method for composting chicken manure. This study investigates the impact of diverse carbon resources on carbon sequestration in larval biomass and excrement, with a focus on bioavailability rather than carbon-to-nitrogen ratio. Five distinct carbon resources were combined with chicken manure, i.e., glucose (CG), sugar (CS), corn flour (CCF), straw (CST), and wood (CW), with pure chicken manure (CK) as a control. These mixtures were inoculated with BSFL for conversion, maintaining consistent initial C/N ratios across all treatments. Results indicated that the CS treatment yielded the highest biomass conversion rate and carbon sequestration within larval bodies, rating to 14.48 ± 0.21 % and 18.01 ± 1.43 %, respectively. Analysis of humus composition in frass revealed that CG and CST treatments produced the highest concentration of humic acid (7.86 ± 0.01 g/kg and 8.01 ± 0.22 g/kg). The both treatments also exhibited superior humification degrees, as evidenced by PARAFAC analysis. Redundancy analysis (RDA) indicated that the presence of Labile Carbon Pool I(LCP1) enhances carbon sequestration capacity within larvae bodies by fostering associations between the relative abundance of <em>Firmicutes</em> and larvae growth. Moreover, LCP1 induced anaerobic conditions increase <em>Euryarchaeota</em> abundance, amplifying anaerobic digestion processes conducive to humus generation during BSFL composting of chicken manure. Our discovery refines conventional approaches to raw materials mixing in BSFL composting and elucidates mechanisms through which varied carbon bioavailability alters microbial community composition, facilitating carbon sequestration in both larvae bodies and frass.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"37 ","pages":"Article 104036"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186425000227","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rising demand for poultry products has resulted in increased chicken manure output and environmental pollution. Cultivation of black soldier fly larvae (BSFL) in chicken manure offers an effective method for composting chicken manure. This study investigates the impact of diverse carbon resources on carbon sequestration in larval biomass and excrement, with a focus on bioavailability rather than carbon-to-nitrogen ratio. Five distinct carbon resources were combined with chicken manure, i.e., glucose (CG), sugar (CS), corn flour (CCF), straw (CST), and wood (CW), with pure chicken manure (CK) as a control. These mixtures were inoculated with BSFL for conversion, maintaining consistent initial C/N ratios across all treatments. Results indicated that the CS treatment yielded the highest biomass conversion rate and carbon sequestration within larval bodies, rating to 14.48 ± 0.21 % and 18.01 ± 1.43 %, respectively. Analysis of humus composition in frass revealed that CG and CST treatments produced the highest concentration of humic acid (7.86 ± 0.01 g/kg and 8.01 ± 0.22 g/kg). The both treatments also exhibited superior humification degrees, as evidenced by PARAFAC analysis. Redundancy analysis (RDA) indicated that the presence of Labile Carbon Pool I(LCP1) enhances carbon sequestration capacity within larvae bodies by fostering associations between the relative abundance of Firmicutes and larvae growth. Moreover, LCP1 induced anaerobic conditions increase Euryarchaeota abundance, amplifying anaerobic digestion processes conducive to humus generation during BSFL composting of chicken manure. Our discovery refines conventional approaches to raw materials mixing in BSFL composting and elucidates mechanisms through which varied carbon bioavailability alters microbial community composition, facilitating carbon sequestration in both larvae bodies and frass.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信