UV/EMS mutagenized thermo-alkalophilic polygalacturonase from Glutamicibacter sp.: Physicochemical insights and biotechnological prospects

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mary Arpana, Aneesa Fasim, Sunil S. More
{"title":"UV/EMS mutagenized thermo-alkalophilic polygalacturonase from Glutamicibacter sp.: Physicochemical insights and biotechnological prospects","authors":"Mary Arpana,&nbsp;Aneesa Fasim,&nbsp;Sunil S. More","doi":"10.1016/j.bcab.2024.103465","DOIUrl":null,"url":null,"abstract":"<div><div>The current study discusses the physicochemical properties of an alkalophilic polygalacturonase (PGmut) that was extracted from the UV/EMS mutagenized <em>Glutamicibacter</em> sp. MAIDO R22b-13 strain in comparison to its wildtype (PGwt). Further, its applications in various biotechnology sectors were also assessed. The PGwt and PGmut enzymes were purified by gel permeation chromatography and biochemical analysis determined them to be alkalophilic with pH optima of 10, however mutagenesis enhanced the temperature optima from 37 °C (PGwt) to 50 °C. The molecular weight of both enzymes was confirmed to be 48.67 kDa by SDS-PAGE and LC-MS. PGmut showed higher substrate affinity and velocity, with Km and Vmax of 0.051 mg/ml and 300.12 μmol/min, respectively, compared to 0.072 mg/ml and 205.30 μmol/min for PGwt. Co<sup>2+</sup> and Mn<sup>2+</sup> ions enhanced PGmut activity, while Ag<sup>2+</sup>, Cu<sup>2+</sup>, Hg<sup>2+</sup>, and EDTA lowered it. Nevertheless, dialysis-based EDTA removal moderately restored enzyme activity, confirming it to be a metalloenzyme. In addition, PGmut enhanced olive oil production, enabled lycopene extraction from tomato peels, and effectively softened sugarcane bagasse pulp for papermaking. Therefore, this study highlights PGmut's enhanced properties that offers cost-efficient, sustainable, time-saving bioprocess solution, benefiting industry and the environment.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"63 ","pages":"Article 103465"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124004493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current study discusses the physicochemical properties of an alkalophilic polygalacturonase (PGmut) that was extracted from the UV/EMS mutagenized Glutamicibacter sp. MAIDO R22b-13 strain in comparison to its wildtype (PGwt). Further, its applications in various biotechnology sectors were also assessed. The PGwt and PGmut enzymes were purified by gel permeation chromatography and biochemical analysis determined them to be alkalophilic with pH optima of 10, however mutagenesis enhanced the temperature optima from 37 °C (PGwt) to 50 °C. The molecular weight of both enzymes was confirmed to be 48.67 kDa by SDS-PAGE and LC-MS. PGmut showed higher substrate affinity and velocity, with Km and Vmax of 0.051 mg/ml and 300.12 μmol/min, respectively, compared to 0.072 mg/ml and 205.30 μmol/min for PGwt. Co2+ and Mn2+ ions enhanced PGmut activity, while Ag2+, Cu2+, Hg2+, and EDTA lowered it. Nevertheless, dialysis-based EDTA removal moderately restored enzyme activity, confirming it to be a metalloenzyme. In addition, PGmut enhanced olive oil production, enabled lycopene extraction from tomato peels, and effectively softened sugarcane bagasse pulp for papermaking. Therefore, this study highlights PGmut's enhanced properties that offers cost-efficient, sustainable, time-saving bioprocess solution, benefiting industry and the environment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信