Synthesis and characterization of lithium transition orthosilicates Li2FexMn1-xSiO4 as cathode material

IF 3.8 Q2 CHEMISTRY, PHYSICAL
Ritesh Kumar , A.L. Sharma , R.K. Singh , Arvind Kumar , Pramod K. Singh , M.Z.A. Yahya , S.N.F. Yusuf , Markus Diantoro , Manoj K. Singh
{"title":"Synthesis and characterization of lithium transition orthosilicates Li2FexMn1-xSiO4 as cathode material","authors":"Ritesh Kumar ,&nbsp;A.L. Sharma ,&nbsp;R.K. Singh ,&nbsp;Arvind Kumar ,&nbsp;Pramod K. Singh ,&nbsp;M.Z.A. Yahya ,&nbsp;S.N.F. Yusuf ,&nbsp;Markus Diantoro ,&nbsp;Manoj K. Singh","doi":"10.1016/j.chphi.2025.100814","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, lithium metal orthosilicates Li<sub>2</sub>FeSiO<sub>4</sub> and Li<sub>2</sub>MnSiO<sub>4</sub> are attracted attention as a cathode material for Li-ion batteries. Here, Li<sub>2</sub>Fe<sub>x</sub>Mn<sub>1-x</sub>SiO<sub>4</sub> (<em>x</em> = 0.3, 0.5, 0.7) cathode materials are synthesized by using sol-gel method, and physically characterized via X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and Energy dispersive X-ray (EDX). The FESEM images confirm the cubical shape particles in nanometers scale. The EDX mapping indicates the presence of iron, manganese, and silicates in different samples. The Li-ion batteries are assembled with gel polymer electrolyte PVdF-HFP/LiClO<sub>4</sub>/EC-PC, and Li<sub>2</sub>Fe<sub>x</sub>Mn<sub>1-x</sub>SiO<sub>4</sub> (<em>x</em>=0.3, 0.5, 0.7) cathode and graphite anode. The assembled cells are electrochemically characterized by cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) techniques. It is observed that the oxidation and reduction peaks of the cells shifted as scan rate increases which indicate the charge transfers are diffusion controlled at the interface. The cell Li<sub>2</sub>Fe<sub>0.5</sub>Mn<sub>0.5</sub>SiO<sub>4</sub>//graphite offers highest discharge capacity∼220 mAh g<sup>−1</sup> at 1 mA cm<sup>−2</sup>.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100814"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, lithium metal orthosilicates Li2FeSiO4 and Li2MnSiO4 are attracted attention as a cathode material for Li-ion batteries. Here, Li2FexMn1-xSiO4 (x = 0.3, 0.5, 0.7) cathode materials are synthesized by using sol-gel method, and physically characterized via X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and Energy dispersive X-ray (EDX). The FESEM images confirm the cubical shape particles in nanometers scale. The EDX mapping indicates the presence of iron, manganese, and silicates in different samples. The Li-ion batteries are assembled with gel polymer electrolyte PVdF-HFP/LiClO4/EC-PC, and Li2FexMn1-xSiO4 (x=0.3, 0.5, 0.7) cathode and graphite anode. The assembled cells are electrochemically characterized by cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) techniques. It is observed that the oxidation and reduction peaks of the cells shifted as scan rate increases which indicate the charge transfers are diffusion controlled at the interface. The cell Li2Fe0.5Mn0.5SiO4//graphite offers highest discharge capacity∼220 mAh g−1 at 1 mA cm−2.

Abstract Image

最近,锂金属正硅酸盐 Li2FeSiO4 和 Li2MnSiO4 作为锂离子电池的正极材料备受关注。本文采用溶胶-凝胶法合成了 Li2FexMn1-xSiO4 (x = 0.3, 0.5, 0.7) 正极材料,并通过 X 射线衍射 (XRD)、场发射扫描电子显微镜 (FESEM) 和能量色散 X 射线 (EDX) 对其进行了物理表征。场发射扫描电子显微镜图像确认了纳米级的立方体颗粒。EDX 图谱显示了不同样品中铁、锰和硅酸盐的存在。锂离子电池由凝胶聚合物电解质 PVdF-HFP/LiClO4/EC-PC、Li2FexMn1-xSiO4(x=0.3、0.5、0.7)阴极和石墨阳极组装而成。通过循环伏安法(CV)和电静态充放电(GCD)技术对组装好的电池进行了电化学表征。据观察,电池的氧化峰和还原峰随着扫描速率的增加而移动,这表明电荷转移是在界面上扩散控制的。锂2Fe0.5Mn0.5SiO4/石墨电池在 1 mA cm-2 时的放电容量最高可达 220 mAh g-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信