Critical exposure time for panel paintings due to change in environmental conditions

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pietro Foti , America Califano , Chao Gao , Raffaele Sepe , Chiara Bertolin , Filippo Berto
{"title":"Critical exposure time for panel paintings due to change in environmental conditions","authors":"Pietro Foti ,&nbsp;America Califano ,&nbsp;Chao Gao ,&nbsp;Raffaele Sepe ,&nbsp;Chiara Bertolin ,&nbsp;Filippo Berto","doi":"10.1016/j.mechmat.2024.105234","DOIUrl":null,"url":null,"abstract":"<div><div>Balancing the preservation of historical collections with energy consumption related to climate control is vital in museums and historical buildings to reduce carbon footprints. This is especially important for the structural integrity of hygroscopic objects like panel paintings, which are susceptible to damage from environmental changes. To address these challenges, a Finite Element (FE) hygro-mechanical-uncoupled model has been developed to assess the safety of panel paintings under changing environmental conditions, specifically changes in relative humidity (RH%) at a constant temperature (T). The model, similar to a thermal problem, uses material parameters from literature expressed consistently with RH as the driving potential. It evaluates scenarios involving panel paintings with different wood supports (Pine and Poplar) subjected to abrupt environmental changes, with or without moisture exchange through the gesso layer. This simulation approach investigates the environmental effects and their temporal evolution on panel paintings. The main outcome is the evaluation of the critical exposure time for a panel painting to experience new damage, particularly in the gesso layer, due to internal cracks.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"202 ","pages":"Article 105234"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624003260","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Balancing the preservation of historical collections with energy consumption related to climate control is vital in museums and historical buildings to reduce carbon footprints. This is especially important for the structural integrity of hygroscopic objects like panel paintings, which are susceptible to damage from environmental changes. To address these challenges, a Finite Element (FE) hygro-mechanical-uncoupled model has been developed to assess the safety of panel paintings under changing environmental conditions, specifically changes in relative humidity (RH%) at a constant temperature (T). The model, similar to a thermal problem, uses material parameters from literature expressed consistently with RH as the driving potential. It evaluates scenarios involving panel paintings with different wood supports (Pine and Poplar) subjected to abrupt environmental changes, with or without moisture exchange through the gesso layer. This simulation approach investigates the environmental effects and their temporal evolution on panel paintings. The main outcome is the evaluation of the critical exposure time for a panel painting to experience new damage, particularly in the gesso layer, due to internal cracks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信