Mohaddeseh Shahabi Nejad, Zahra Vakily, Ali Mostafavi, Hassan Sheibani
{"title":"Graphitic carbon nitride nanotubes decorated with ruthenium: New efficient visible-light-driven photocatalyst","authors":"Mohaddeseh Shahabi Nejad, Zahra Vakily, Ali Mostafavi, Hassan Sheibani","doi":"10.1016/j.enmm.2024.101034","DOIUrl":null,"url":null,"abstract":"<div><div>The discharge of effluents containing antibiotics into the environment poses a significant challenge, contributing to the proliferation of resistant bacterial pathogens. Consequently, the removal and degradation of these contaminants from aqueous environments, particularly through photodegradation with potent photocatalysts, has attracted considerable research interest. In this research, A novel generation of visible-light photocatalyst was developed by immobilizing a ruthenium complex on modified graphitic carbon nitride nanotubes, with a focus on degrading the commonly used antibiotic, tetracycline. To achieve this, the synthesis of graphitic carbon nitride nanotubes (g-C<sub>3</sub>N<sub>4</sub> NTs) was successfully conducted using the hydrothermal method, followed by functionalization with the 1,10-Phenantroline-5,6-dione ligand. Subsequently, the functionalized g-C<sub>3</sub>N<sub>4</sub> NTs were further enhanced through the immobilization of dichloro(p-cymene)ruthenium(II) dimer. The structure and morphology of the prepared photocatalyst were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR)spectroscopy, and scanning and transmission electron microscopy (SEM & TEM). Subsequently, the photocatalyst’s efficiency in optically degrading tetracycline antibiotics was evaluated in a suspension reactor equipped with a 60 W LED lamp. Key parameters such as catalyst dosage, irradiation duration, temperature, and pH were systematically optimized. The results indicated that the immobilization of the Ru complex onto functionalized g-C<sub>3</sub>N<sub>4</sub> NTs significantly enhanced photocatalytic activity, resulting in a 43 % increase in degradation efficiency. Furthermore, Chemical Oxygen Demand (COD) analysis demonstrated that approximately 90 % mineralization of a 10 mg/L tetracycline solution could be achieved using 20 mg of Ru (II) complex/g-C<sub>3</sub>N<sub>4</sub> NTs at pH 7 after 480 min, without the need for additional oxidants.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101034"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The discharge of effluents containing antibiotics into the environment poses a significant challenge, contributing to the proliferation of resistant bacterial pathogens. Consequently, the removal and degradation of these contaminants from aqueous environments, particularly through photodegradation with potent photocatalysts, has attracted considerable research interest. In this research, A novel generation of visible-light photocatalyst was developed by immobilizing a ruthenium complex on modified graphitic carbon nitride nanotubes, with a focus on degrading the commonly used antibiotic, tetracycline. To achieve this, the synthesis of graphitic carbon nitride nanotubes (g-C3N4 NTs) was successfully conducted using the hydrothermal method, followed by functionalization with the 1,10-Phenantroline-5,6-dione ligand. Subsequently, the functionalized g-C3N4 NTs were further enhanced through the immobilization of dichloro(p-cymene)ruthenium(II) dimer. The structure and morphology of the prepared photocatalyst were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR)spectroscopy, and scanning and transmission electron microscopy (SEM & TEM). Subsequently, the photocatalyst’s efficiency in optically degrading tetracycline antibiotics was evaluated in a suspension reactor equipped with a 60 W LED lamp. Key parameters such as catalyst dosage, irradiation duration, temperature, and pH were systematically optimized. The results indicated that the immobilization of the Ru complex onto functionalized g-C3N4 NTs significantly enhanced photocatalytic activity, resulting in a 43 % increase in degradation efficiency. Furthermore, Chemical Oxygen Demand (COD) analysis demonstrated that approximately 90 % mineralization of a 10 mg/L tetracycline solution could be achieved using 20 mg of Ru (II) complex/g-C3N4 NTs at pH 7 after 480 min, without the need for additional oxidants.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation