Theoretical investigation on fractal–fractional nonlinear ordinary differential equations

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Abdon Atangana , Seda İğret Araz
{"title":"Theoretical investigation on fractal–fractional nonlinear ordinary differential equations","authors":"Abdon Atangana ,&nbsp;Seda İğret Araz","doi":"10.1016/j.nonrwa.2024.104296","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we examine the existence and uniqueness conditions of the solutions of the nonlinear fractal-fractional differential equations. Particular emphasis is placed on four cases: exponential decay, power law, generalized Mittag-Leffler kernels and the Delta-Dirac function. Our first contribution is the formulation of some basic inequalities inspired from Gronwall inequality setting up a solid foundation for our analysis to follow. We subsequently carefully obtain the maximal and minimal solutions in each scenario, providing a complete picture of their structure. Finally we show convergence of four different successive approximation schemes, validating their applicability in the various contexts. This is an important finding that adds to the growing literature on the use of fractional calculus in complex dynamical systems.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104296"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002359","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we examine the existence and uniqueness conditions of the solutions of the nonlinear fractal-fractional differential equations. Particular emphasis is placed on four cases: exponential decay, power law, generalized Mittag-Leffler kernels and the Delta-Dirac function. Our first contribution is the formulation of some basic inequalities inspired from Gronwall inequality setting up a solid foundation for our analysis to follow. We subsequently carefully obtain the maximal and minimal solutions in each scenario, providing a complete picture of their structure. Finally we show convergence of four different successive approximation schemes, validating their applicability in the various contexts. This is an important finding that adds to the growing literature on the use of fractional calculus in complex dynamical systems.
分形-分数阶非线性常微分方程的理论研究
本文研究了非线性分形-分数阶微分方程解的存在唯一性条件。特别强调了四种情况:指数衰减,幂律,广义mitag - leffler核和Delta-Dirac函数。我们的第一个贡献是从格隆沃尔不等式中得到启发的一些基本不等式的公式,为我们接下来的分析奠定了坚实的基础。随后,我们仔细地获得了每种情况下的最大和最小解,提供了其结构的完整图像。最后,我们展示了四种不同的连续逼近方案的收敛性,验证了它们在各种情况下的适用性。这是一个重要的发现,增加了越来越多的文献在复杂动力系统中使用分数微积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信