Topological and control theoretic properties of Hamilton–Jacobi equations via Lax-Oleinik commutators

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Piermarco Cannarsa , Wei Cheng , Jiahui Hong
{"title":"Topological and control theoretic properties of Hamilton–Jacobi equations via Lax-Oleinik commutators","authors":"Piermarco Cannarsa ,&nbsp;Wei Cheng ,&nbsp;Jiahui Hong","doi":"10.1016/j.nonrwa.2024.104282","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of weak KAM theory, we discuss the commutators <span><math><msub><mrow><mrow><mo>{</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>∘</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>}</mo></mrow></mrow><mrow><mi>t</mi><mo>⩾</mo><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mrow><mo>{</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∘</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>}</mo></mrow></mrow><mrow><mi>t</mi><mo>⩾</mo><mn>0</mn></mrow></msub></math></span> of Lax-Oleinik operators. We characterize the relation <span><math><mrow><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>∘</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>=</mo><mi>I</mi><mi>d</mi></mrow></math></span> for both small time and arbitrary time <span><math><mi>t</mi></math></span>. We show this relation characterizes controllability for evolutionary Hamilton–Jacobi equation. Based on our previous work on the cut locus of viscosity solution, we refine our analysis of the cut time function <span><math><mi>τ</mi></math></span> in terms of commutators <span><math><mrow><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∘</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∘</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>−</mo></mrow></msubsup></mrow></math></span> and clarify the structure of the super/sub-level set of the cut time function <span><math><mi>τ</mi></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104282"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002219","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of weak KAM theory, we discuss the commutators {TtTt+}t0 and {Tt+Tt}t0 of Lax-Oleinik operators. We characterize the relation TtTt+=Id for both small time and arbitrary time t. We show this relation characterizes controllability for evolutionary Hamilton–Jacobi equation. Based on our previous work on the cut locus of viscosity solution, we refine our analysis of the cut time function τ in terms of commutators Tt+TtTt+Tt and clarify the structure of the super/sub-level set of the cut time function τ.
基于Lax-Oleinik换向子的Hamilton-Jacobi方程的拓扑和控制理论性质
在弱KAM理论的背景下,我们讨论了Lax-Oleinik算子的对向子{Tt−°Tt+}t大于或等于0和{Tt+°Tt−}t大于或等于0。我们描述了在小时间和任意时间t下Tt−∘Tt+=Id的关系。我们证明了这种关系表征了进化哈密顿-雅可比方程的可控性。基于我们之前对黏性解切割轨迹的研究,我们用换向子Tt+°Tt−−Tt+°Tt−来完善对切割时间函数τ的分析,并阐明了切割时间函数τ的上/子水平集的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信