{"title":"Topological and control theoretic properties of Hamilton–Jacobi equations via Lax-Oleinik commutators","authors":"Piermarco Cannarsa , Wei Cheng , Jiahui Hong","doi":"10.1016/j.nonrwa.2024.104282","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of weak KAM theory, we discuss the commutators <span><math><msub><mrow><mrow><mo>{</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>∘</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>}</mo></mrow></mrow><mrow><mi>t</mi><mo>⩾</mo><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mrow><mo>{</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∘</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>}</mo></mrow></mrow><mrow><mi>t</mi><mo>⩾</mo><mn>0</mn></mrow></msub></math></span> of Lax-Oleinik operators. We characterize the relation <span><math><mrow><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>∘</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>=</mo><mi>I</mi><mi>d</mi></mrow></math></span> for both small time and arbitrary time <span><math><mi>t</mi></math></span>. We show this relation characterizes controllability for evolutionary Hamilton–Jacobi equation. Based on our previous work on the cut locus of viscosity solution, we refine our analysis of the cut time function <span><math><mi>τ</mi></math></span> in terms of commutators <span><math><mrow><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∘</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∘</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>−</mo></mrow></msubsup></mrow></math></span> and clarify the structure of the super/sub-level set of the cut time function <span><math><mi>τ</mi></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104282"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002219","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of weak KAM theory, we discuss the commutators and of Lax-Oleinik operators. We characterize the relation for both small time and arbitrary time . We show this relation characterizes controllability for evolutionary Hamilton–Jacobi equation. Based on our previous work on the cut locus of viscosity solution, we refine our analysis of the cut time function in terms of commutators and clarify the structure of the super/sub-level set of the cut time function .
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.