Applying Boron Fertilizer at Different Growth Stages Promotes Boron Uptake and Productivity in Rice

IF 5.6 2区 农林科学 Q1 AGRONOMY
Sitthikorn Bodeerath , Jeeraporn Veeradittakit , Sansanee Jamjod , Chanakan Prom-U-Thai
{"title":"Applying Boron Fertilizer at Different Growth Stages Promotes Boron Uptake and Productivity in Rice","authors":"Sitthikorn Bodeerath ,&nbsp;Jeeraporn Veeradittakit ,&nbsp;Sansanee Jamjod ,&nbsp;Chanakan Prom-U-Thai","doi":"10.1016/j.rsci.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><div>Boron (B) is an essential micronutrient for plant growth and yield. We investigated the optimal growth stage for B fertilizer application to improve rice production. The study was conducted using a 2 × 4 factorial design in a randomized complete block during the rainy season of 2022. We utilized two premium Thai rice varieties Khao Dawk Mali 105 (KDML105) and Pathum Thani 1 (PTT1), and four soil B fertilizer treatments: a control (no B application), B application at the tillering stage, B application at the flowering stage, and B application at both the tillering and flowering stages. The results showed that the application of B fertilizer at the flowering stage and at both the tillering and flowering stages increased grain yield of KDML105 by 25.0% and 34.0%, respectively. In contrast, the grain yield of PTT1 showed no response to B application. The increased grain yield of KDML105 was attributed to an increased number of panicles per plant and a higher filled grain rate, which was due to the elevated B concentration in all plant parts and the total B uptake, particularly when B was applied at the flowering and tillering stages. Notably, B application increased the fertilized grain rates and reduced the proportion of unfertilized grains, a phenomenon that corresponded with the increased B concentration across all plant parts. The total B uptake ranged from 5.11 to 15.85 mg/m<sup>2</sup> in KDML105 and from 8.37 to 24.26 mg/m<sup>2</sup> in PTT1, with the highest total B uptake observed when B was applied at both the tillering and flowering stages for both rice varieties.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"31 6","pages":"Pages 751-760"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630824000878","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Boron (B) is an essential micronutrient for plant growth and yield. We investigated the optimal growth stage for B fertilizer application to improve rice production. The study was conducted using a 2 × 4 factorial design in a randomized complete block during the rainy season of 2022. We utilized two premium Thai rice varieties Khao Dawk Mali 105 (KDML105) and Pathum Thani 1 (PTT1), and four soil B fertilizer treatments: a control (no B application), B application at the tillering stage, B application at the flowering stage, and B application at both the tillering and flowering stages. The results showed that the application of B fertilizer at the flowering stage and at both the tillering and flowering stages increased grain yield of KDML105 by 25.0% and 34.0%, respectively. In contrast, the grain yield of PTT1 showed no response to B application. The increased grain yield of KDML105 was attributed to an increased number of panicles per plant and a higher filled grain rate, which was due to the elevated B concentration in all plant parts and the total B uptake, particularly when B was applied at the flowering and tillering stages. Notably, B application increased the fertilized grain rates and reduced the proportion of unfertilized grains, a phenomenon that corresponded with the increased B concentration across all plant parts. The total B uptake ranged from 5.11 to 15.85 mg/m2 in KDML105 and from 8.37 to 24.26 mg/m2 in PTT1, with the highest total B uptake observed when B was applied at both the tillering and flowering stages for both rice varieties.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rice Science
Rice Science Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍: Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信