{"title":"Adsorption of arsenic (V) by biologically reductive lanthanum-loaded bentonite: Transportation and injection removal experiments","authors":"Dayong Luo , XiaoSong Tian , Ruxiang Qin","doi":"10.1016/j.eti.2024.103922","DOIUrl":null,"url":null,"abstract":"<div><div>Iron reducing bacterium <em>Acidiphilium cryputum JF-5</em> was used to biologically load lanthanum on bentonite (BLB) to remove arsenic(V) from solution. By biological reductive release of iron from bentonite and lanthanum loading, new lanthanum-loaded bentonite was prepared and the adsorption efficiency of arsenic(V) was improved from 7.87 mg/g to 22.69 mg/g in bath experiment. The mobilization of the dispersed biologically loaded lanthanum bentonite particles can be described by the Convection-Dispersion Equation. The breakthrough ability of biologically lanthanum-loaded bentonite (BLB) increased by 5.5 times when increasing flow velocities from 90 mL/h to 360 mL/h. When injected BLB into arsenic(V)-containing pre water of quartz column, the concentration of arsenic(V) could quickly decrease the initial concentration of arsenic(V) from 2000 μg/L to lower than limit for drinking water and keep relative stable. Meanwhile, the hydraulic conductivity of treatment system is also improved compared to prinstine bentonite due to iron-deficient in BLB. The results suggest that biologically load lanthanum bentonite may be an effective modified mineral for remediating arsenic(V)-containing soil.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"37 ","pages":"Article 103922"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424003985","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron reducing bacterium Acidiphilium cryputum JF-5 was used to biologically load lanthanum on bentonite (BLB) to remove arsenic(V) from solution. By biological reductive release of iron from bentonite and lanthanum loading, new lanthanum-loaded bentonite was prepared and the adsorption efficiency of arsenic(V) was improved from 7.87 mg/g to 22.69 mg/g in bath experiment. The mobilization of the dispersed biologically loaded lanthanum bentonite particles can be described by the Convection-Dispersion Equation. The breakthrough ability of biologically lanthanum-loaded bentonite (BLB) increased by 5.5 times when increasing flow velocities from 90 mL/h to 360 mL/h. When injected BLB into arsenic(V)-containing pre water of quartz column, the concentration of arsenic(V) could quickly decrease the initial concentration of arsenic(V) from 2000 μg/L to lower than limit for drinking water and keep relative stable. Meanwhile, the hydraulic conductivity of treatment system is also improved compared to prinstine bentonite due to iron-deficient in BLB. The results suggest that biologically load lanthanum bentonite may be an effective modified mineral for remediating arsenic(V)-containing soil.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.