{"title":"Mn-doped ZnO thin films as a platform for reagentless uric acid biosensor","authors":"Bilasini Devi Naorem , Jatinder Pal Singh , Babita Sharma , Satyam Garg , Athira C , Hashima Sherin , Mahima Momaliya , Muskan , Shubhi Sahu , Arijit Chowdhuri , Mallika Verma , Monika Tomar , Neha Batra","doi":"10.1016/j.chphi.2025.100823","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, sol gel technique is used to fabricate manganese (Mn) doped ZnO thin films and further utilize them as a platform for uric acid biosensors. The objective was to introduce manganese into the ZnO matrix to enhance its redox properties, capitalizing on the multivalent nature of manganese. The Mn-doped thin films of concentrations varying from 3 %,5 %,7 % and 10 % were prepared and further characterized using UV–vis spectroscopy, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and cyclic voltammetry (CV) measurements. The ZnO thin films with 7 % doping of Mn exhibited improved redox behaviour, as evident by the distinct redox peaks. In order to immobilise the uricase enzyme, the 7 % Mn doped composition was used, creating a highly sensitive and focused uric acid detection platform. The fabricated biosensor exhibits excellent performance in terms of sensitivity (40 µAmM<sup>-1</sup>cm<sup>-2</sup>), selectivity with <5 % deviation found in presence of other known markers present in human sera, and shelf life >12 weeks, enabling precise and sensitive uric acid detection. This study brings to light an alternate approach in developing point of care biosensors using transition metal doped ZnO thin films.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100823"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, sol gel technique is used to fabricate manganese (Mn) doped ZnO thin films and further utilize them as a platform for uric acid biosensors. The objective was to introduce manganese into the ZnO matrix to enhance its redox properties, capitalizing on the multivalent nature of manganese. The Mn-doped thin films of concentrations varying from 3 %,5 %,7 % and 10 % were prepared and further characterized using UV–vis spectroscopy, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and cyclic voltammetry (CV) measurements. The ZnO thin films with 7 % doping of Mn exhibited improved redox behaviour, as evident by the distinct redox peaks. In order to immobilise the uricase enzyme, the 7 % Mn doped composition was used, creating a highly sensitive and focused uric acid detection platform. The fabricated biosensor exhibits excellent performance in terms of sensitivity (40 µAmM-1cm-2), selectivity with <5 % deviation found in presence of other known markers present in human sera, and shelf life >12 weeks, enabling precise and sensitive uric acid detection. This study brings to light an alternate approach in developing point of care biosensors using transition metal doped ZnO thin films.