Development of Fe-reinforced PLA-based composite filament for 3D printing: Process parameters, mechanical and microstructural characterization

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Melisa Memiş, Dilşad Akgümüş Gök
{"title":"Development of Fe-reinforced PLA-based composite filament for 3D printing: Process parameters, mechanical and microstructural characterization","authors":"Melisa Memiş,&nbsp;Dilşad Akgümüş Gök","doi":"10.1016/j.asej.2025.103279","DOIUrl":null,"url":null,"abstract":"<div><div>The most used raw materials in 3D printers, commonly known as Fused Deposition Modeling (FDM), are filaments. These filaments are obtained by going through heating, injection, cooling, winding and coiling stages in the filament extruder machine. FDM technology, which is used especially for prototype production purposes, is expected to be used more widely due to its increased mass production capacity, recyclability, environmental friendliness and waste reduction. In this study, before the production of composite filament, preliminary tests were carried out with polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate glycol (PET-G) polymer granules in a laboratory type filament extruder machine, and the process parameters were determined for each polymer filament. Since the optimum process parameters (temperature, injection rate, extrusion rate, and winding rate) were obtained in PLA, composite filament was produced by reinforcing 5% iron (Fe) powder into the PLA matrix in the same extruder machine. The produced filaments were subjected to tensile, hardness, FTIR, surface roughness and SEM-EDS analyses. Analysis has shown that Fe-reinforced PLA-based composite filament increases the hardness of pure PLA filament by 21.15%, tensile strength by 49.60% and increases the surface roughness by 4 times. As a result, it was determined that 5%Fe powder added to PLA improved the mechanical properties but negatively affected the surface roughness.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 2","pages":"Article 103279"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000206","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The most used raw materials in 3D printers, commonly known as Fused Deposition Modeling (FDM), are filaments. These filaments are obtained by going through heating, injection, cooling, winding and coiling stages in the filament extruder machine. FDM technology, which is used especially for prototype production purposes, is expected to be used more widely due to its increased mass production capacity, recyclability, environmental friendliness and waste reduction. In this study, before the production of composite filament, preliminary tests were carried out with polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate glycol (PET-G) polymer granules in a laboratory type filament extruder machine, and the process parameters were determined for each polymer filament. Since the optimum process parameters (temperature, injection rate, extrusion rate, and winding rate) were obtained in PLA, composite filament was produced by reinforcing 5% iron (Fe) powder into the PLA matrix in the same extruder machine. The produced filaments were subjected to tensile, hardness, FTIR, surface roughness and SEM-EDS analyses. Analysis has shown that Fe-reinforced PLA-based composite filament increases the hardness of pure PLA filament by 21.15%, tensile strength by 49.60% and increases the surface roughness by 4 times. As a result, it was determined that 5%Fe powder added to PLA improved the mechanical properties but negatively affected the surface roughness.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信