{"title":"Multifractal detrended cross-correlation coefficient for cosmic ray and sunspot time series","authors":"D. Sierra-Porta","doi":"10.1016/j.jastp.2024.106407","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into the multifractal cross-correlations between cosmic ray intensity and sunspot numbers, addressing the shortcomings of traditional correlation analyses that often fail to capture the intricate and multifractal nature of these time series. Cosmic rays and solar activity are critical components of space weather dynamics, and understanding their interactions is essential for predicting space weather events that can affect satellite operations, communication systems, and even climate on Earth. We employ Multifractal Detrended Cross-Correlation Analysis (MFDCCA) to explore these complex relationships across a range of time scales. Our methodology involves segmenting the time series into windows of varying lengths, from 50 to 3900 days, and calculating cross-correlation coefficients for different polynomial fitting orders and fluctuation orders <span><math><mrow><mi>q</mi><mo>=</mo><mrow><mo>[</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>]</mo></mrow></mrow></math></span>, using polynomial orders of 2, 3, 4, and 5. This approach allows us to capture the multifractal properties and temporal dependencies within and between the series.</div><div>Our analysis reveals significant multifractal correlations, with the highest correlation coefficient of 0.876 occurring for <span><math><mrow><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> and polynomial order 2 with a lag of 57 days. The results demonstrate that higher polynomial orders result in more stable and robust coefficients, indicating stronger correlations on larger scales. These findings highlight the efficacy of advanced techniques like MFDCCA in uncovering the complex interactions between cosmic rays and solar activity, which are often missed by conventional methods. The implications of our study extend to the enhancement of space weather prediction models. By incorporating additional heliophysical variables such as solar wind conditions, interplanetary magnetic field data, and indices of coronal mass ejections or solar flares, future research can construct more comprehensive models that better capture the multifractal interactions governing these phenomena. This expanded understanding is crucial for improving the accuracy of space weather forecasts and mitigating the potential impacts of space weather events on technological and natural systems.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"266 ","pages":"Article 106407"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624002359","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study delves into the multifractal cross-correlations between cosmic ray intensity and sunspot numbers, addressing the shortcomings of traditional correlation analyses that often fail to capture the intricate and multifractal nature of these time series. Cosmic rays and solar activity are critical components of space weather dynamics, and understanding their interactions is essential for predicting space weather events that can affect satellite operations, communication systems, and even climate on Earth. We employ Multifractal Detrended Cross-Correlation Analysis (MFDCCA) to explore these complex relationships across a range of time scales. Our methodology involves segmenting the time series into windows of varying lengths, from 50 to 3900 days, and calculating cross-correlation coefficients for different polynomial fitting orders and fluctuation orders , using polynomial orders of 2, 3, 4, and 5. This approach allows us to capture the multifractal properties and temporal dependencies within and between the series.
Our analysis reveals significant multifractal correlations, with the highest correlation coefficient of 0.876 occurring for and polynomial order 2 with a lag of 57 days. The results demonstrate that higher polynomial orders result in more stable and robust coefficients, indicating stronger correlations on larger scales. These findings highlight the efficacy of advanced techniques like MFDCCA in uncovering the complex interactions between cosmic rays and solar activity, which are often missed by conventional methods. The implications of our study extend to the enhancement of space weather prediction models. By incorporating additional heliophysical variables such as solar wind conditions, interplanetary magnetic field data, and indices of coronal mass ejections or solar flares, future research can construct more comprehensive models that better capture the multifractal interactions governing these phenomena. This expanded understanding is crucial for improving the accuracy of space weather forecasts and mitigating the potential impacts of space weather events on technological and natural systems.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.