Distribution, emission, and cycling processes of carbon monoxide in the tropical open ocean

IF 3 3区 地球科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xuan Ji , Ming-Liang Zhao , Jie Ni , Gao-Bin Xu , Jing Zhang , Gui-Peng Yang
{"title":"Distribution, emission, and cycling processes of carbon monoxide in the tropical open ocean","authors":"Xuan Ji ,&nbsp;Ming-Liang Zhao ,&nbsp;Jie Ni ,&nbsp;Gao-Bin Xu ,&nbsp;Jing Zhang ,&nbsp;Gui-Peng Yang","doi":"10.1016/j.marchem.2024.104482","DOIUrl":null,"url":null,"abstract":"<div><div>The carbon monoxide (CO) cycle in the marine mixed layer determines its emissions to the atmosphere and subsequently affects atmospheric chemistry and climate change. However, the contributions of oceanic CO transformation pathways and their impacting factors remain inadequately understood. Therefore, we investigated the distribution and cycle processes of CO in the Eastern Indian Ocean (EIO) and developed a CO budget model for the mixed layer. Surface seawater CO concentrations presented a diurnal variation due to periodic variations in solar radiation and rapid microbial consumption. The spatial distribution of CO in seawater was dominated by chromophoric dissolved organic matter (CDOM) and solar radiation. The EIO was a source of atmospheric CO and its daily CO emissions produced increases in the CO mixing ratio and hydroxyl radical consumption rate in the overlying atmosphere by 74.03 pptv and 6.48 pptv d<sup>−1</sup>, respectively. Additionally, the budget model findings indicated that photoproduction (CDOM plus particulate organic matter), dark production, and phytoplankton emission accounted for about 67 %, 30 %, and 3 % of total CO production. The microbial consumption (94 %) and sea-air exchange (6 %) were the primary and secondary sink for CO within the mixed layer, respectively. Moreover, the photo-mineralization of dissolved organic carbon was estimated using CO as a proxy for CO<sub>2</sub> photoproduction. This study deepens our understanding of the oceanic CO cycle and the impact of photo-mineralization on the carbon cycle and is vital for refining global oceanic CO source-sink budgets and modelling studies.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"268 ","pages":"Article 104482"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420324001336","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The carbon monoxide (CO) cycle in the marine mixed layer determines its emissions to the atmosphere and subsequently affects atmospheric chemistry and climate change. However, the contributions of oceanic CO transformation pathways and their impacting factors remain inadequately understood. Therefore, we investigated the distribution and cycle processes of CO in the Eastern Indian Ocean (EIO) and developed a CO budget model for the mixed layer. Surface seawater CO concentrations presented a diurnal variation due to periodic variations in solar radiation and rapid microbial consumption. The spatial distribution of CO in seawater was dominated by chromophoric dissolved organic matter (CDOM) and solar radiation. The EIO was a source of atmospheric CO and its daily CO emissions produced increases in the CO mixing ratio and hydroxyl radical consumption rate in the overlying atmosphere by 74.03 pptv and 6.48 pptv d−1, respectively. Additionally, the budget model findings indicated that photoproduction (CDOM plus particulate organic matter), dark production, and phytoplankton emission accounted for about 67 %, 30 %, and 3 % of total CO production. The microbial consumption (94 %) and sea-air exchange (6 %) were the primary and secondary sink for CO within the mixed layer, respectively. Moreover, the photo-mineralization of dissolved organic carbon was estimated using CO as a proxy for CO2 photoproduction. This study deepens our understanding of the oceanic CO cycle and the impact of photo-mineralization on the carbon cycle and is vital for refining global oceanic CO source-sink budgets and modelling studies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Chemistry
Marine Chemistry 化学-海洋学
CiteScore
6.00
自引率
3.30%
发文量
70
审稿时长
4.5 months
期刊介绍: Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信