Optimization of performance under off-design conditions for dual-pressure organic Rankine cycle with hot source splitting

IF 8 Q1 ENERGY & FUELS
Shiqi Wang , Zhongyuan Yuan , Kim Tiow Ooi , Xiangyu Chang , Nanyang Yu
{"title":"Optimization of performance under off-design conditions for dual-pressure organic Rankine cycle with hot source splitting","authors":"Shiqi Wang ,&nbsp;Zhongyuan Yuan ,&nbsp;Kim Tiow Ooi ,&nbsp;Xiangyu Chang ,&nbsp;Nanyang Yu","doi":"10.1016/j.nexus.2025.100360","DOIUrl":null,"url":null,"abstract":"<div><div>The Dual-Pressure Organic Rankine Cycle system, integrated with Hot Source Splitting (DORC-HSS), demonstrates enhanced performance by optimizing heat matching. A primary challenge in deploying the DORC-HSS system lies in its off-design performance, particularly when faced with varying conditions of heat and cold sources. By using the first law of thermodynamics and the logarithmic mean temperature difference method, the MATLAB model of the system is established, and the net output power is optimized by particle swarm optimization. Our analysis reveals that in optimal off-design scenarios, the working fluid exits each loop preheater nearing a saturated liquid state. The increase in hot water flow rate leads to a decrease in the superheat degree in the high-pressure loop. Conversely, the working fluid at the expander inlet in the low-pressure loop consistently maintains a saturated vapor state. Furthermore, a 20.0% increase in optimal output power is observed for every 5 °C rise in hot water inlet temperature, and a 12.2% increase for every 20 kg/s increment in hot water flow rate. The highest thermal and exergy efficiencies achieved are 8.54% and 49.98%, respectively. A reduction of 1 °C in cooling water temperature corresponds to a 3.5% increase in output power. When the cooling water inlet temperature is 17 °C, the highest thermal and exergy efficiencies are 8.0% and 52.3%. The optimal hot water split ratio ranges from 67% to 79%. This optimization method can be used for any waste heat recovery system using DORC-HSS. Industries can approach control targets, ensuring the safe operation and translating into meaningful energy savings and lower operating costs. The economic benefits from such enhancements could shorten the payback period for DORC-HSS installations.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100360"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The Dual-Pressure Organic Rankine Cycle system, integrated with Hot Source Splitting (DORC-HSS), demonstrates enhanced performance by optimizing heat matching. A primary challenge in deploying the DORC-HSS system lies in its off-design performance, particularly when faced with varying conditions of heat and cold sources. By using the first law of thermodynamics and the logarithmic mean temperature difference method, the MATLAB model of the system is established, and the net output power is optimized by particle swarm optimization. Our analysis reveals that in optimal off-design scenarios, the working fluid exits each loop preheater nearing a saturated liquid state. The increase in hot water flow rate leads to a decrease in the superheat degree in the high-pressure loop. Conversely, the working fluid at the expander inlet in the low-pressure loop consistently maintains a saturated vapor state. Furthermore, a 20.0% increase in optimal output power is observed for every 5 °C rise in hot water inlet temperature, and a 12.2% increase for every 20 kg/s increment in hot water flow rate. The highest thermal and exergy efficiencies achieved are 8.54% and 49.98%, respectively. A reduction of 1 °C in cooling water temperature corresponds to a 3.5% increase in output power. When the cooling water inlet temperature is 17 °C, the highest thermal and exergy efficiencies are 8.0% and 52.3%. The optimal hot water split ratio ranges from 67% to 79%. This optimization method can be used for any waste heat recovery system using DORC-HSS. Industries can approach control targets, ensuring the safe operation and translating into meaningful energy savings and lower operating costs. The economic benefits from such enhancements could shorten the payback period for DORC-HSS installations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信