{"title":"Catalytic application of second cycle copper-based laboratory waste for synthesis of beta-keto-1,2,3-triazole: A micro circular economy approach","authors":"Randhir Rai","doi":"10.1016/j.scenv.2024.100205","DOIUrl":null,"url":null,"abstract":"<div><div>This study follows the circular economy principle to explore the catalytic potential of second-cycle cuprous oxide laboratory waste. Undergraduate students generated cuprous oxide as a second cycle waste during a practical session, where they used an aqueous solution of recycled copper sulfate pentahydrate as a Fehling’s reagent A. The cuprous oxide waste was isolated by a simple filtration method and characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and electron microscopic techniques. The isolated material was used as an active click catalyst to synthesize beta-keto-1,2,3-triazole in an aqueous medium <em>via</em> a one-pot, three-component click reaction. The catalytic activity of the second-cycled cuprous oxide waste was compared with first-cycled cuprous oxide waste and commercial cuprous oxide. We observed that the catalyst was recycled and reused for up to two cycles without significant yield loss. Also, the synthesized beta-keto-1,2,3-triazole was found to show chelating properties towards copper.</div></div>","PeriodicalId":101196,"journal":{"name":"Sustainable Chemistry for the Environment","volume":"9 ","pages":"Article 100205"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for the Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949839224001482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study follows the circular economy principle to explore the catalytic potential of second-cycle cuprous oxide laboratory waste. Undergraduate students generated cuprous oxide as a second cycle waste during a practical session, where they used an aqueous solution of recycled copper sulfate pentahydrate as a Fehling’s reagent A. The cuprous oxide waste was isolated by a simple filtration method and characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and electron microscopic techniques. The isolated material was used as an active click catalyst to synthesize beta-keto-1,2,3-triazole in an aqueous medium via a one-pot, three-component click reaction. The catalytic activity of the second-cycled cuprous oxide waste was compared with first-cycled cuprous oxide waste and commercial cuprous oxide. We observed that the catalyst was recycled and reused for up to two cycles without significant yield loss. Also, the synthesized beta-keto-1,2,3-triazole was found to show chelating properties towards copper.