María Graciela Molina , Jorge H. Namour , Claudio Cesaroni , Luca Spogli , Noelia B. Argüelles , Eric N. Asamoah
{"title":"Boosting total electron content forecasting based on deep learning toward an operational service","authors":"María Graciela Molina , Jorge H. Namour , Claudio Cesaroni , Luca Spogli , Noelia B. Argüelles , Eric N. Asamoah","doi":"10.1016/j.jastp.2025.106427","DOIUrl":null,"url":null,"abstract":"<div><div>We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.</div><div>CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.</div><div>The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"268 ","pages":"Article 106427"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682625000112","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.
CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.
The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.