{"title":"Characterizing long-term cosmic ray time series with geometric network curvature metrics","authors":"D. Sierra-Porta","doi":"10.1016/j.jastp.2025.106418","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the relationship between geometry and nonlinear dynamics in time series of cosmic ray counts recorded at neutron monitors at ground stations. Using advanced geometric and topological analysis techniques, we construct complex networks from the time series and calculate curvature measures such as Ollivier-Ricci curvature, Forman-Ricci curvature, and Ricci flow for each series. The analysis reveals significant correlations between these curvature metrics and key parameters such as geomagnetic cutoff rigidity and detector latitude. In particular, Forman-Ricci curvature exhibits a robust negative correlation with cutoff rigidity (Pearson <span><math><mrow><mi>r</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>85</mn></mrow></math></span>, Spearman <span><math><mrow><mi>ρ</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>86</mn></mrow></math></span>, <span><math><mi>p</mi></math></span>-value <span><math><mrow><mo><</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span>), while Ricci flow also shows a strong and highly significant inverse relationship with cutoff rigidity (Pearson <span><math><mrow><mi>r</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>92</mn></mrow></math></span>, Spearman <span><math><mrow><mi>ρ</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>89</mn></mrow></math></span>, <span><math><mi>p</mi></math></span>-value <span><math><mrow><mo><</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span>). These results suggest that the geometrical structure of the networks, influenced by geomagnetic conditions, plays a crucial role in the variability, complexity, and fractality of cosmic ray time series. Furthermore, the study underscores the importance of considering network topology and curvature metrics in the analysis of cosmic ray data, offering new perspectives for understanding space weather phenomena and improving predictive models. This integrative approach not only advances our knowledge of cosmic ray dynamics, but also has important implications for mitigating risks associated with space weather conditions on Earth.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"268 ","pages":"Article 106418"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682625000021","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the relationship between geometry and nonlinear dynamics in time series of cosmic ray counts recorded at neutron monitors at ground stations. Using advanced geometric and topological analysis techniques, we construct complex networks from the time series and calculate curvature measures such as Ollivier-Ricci curvature, Forman-Ricci curvature, and Ricci flow for each series. The analysis reveals significant correlations between these curvature metrics and key parameters such as geomagnetic cutoff rigidity and detector latitude. In particular, Forman-Ricci curvature exhibits a robust negative correlation with cutoff rigidity (Pearson , Spearman , -value ), while Ricci flow also shows a strong and highly significant inverse relationship with cutoff rigidity (Pearson , Spearman , -value ). These results suggest that the geometrical structure of the networks, influenced by geomagnetic conditions, plays a crucial role in the variability, complexity, and fractality of cosmic ray time series. Furthermore, the study underscores the importance of considering network topology and curvature metrics in the analysis of cosmic ray data, offering new perspectives for understanding space weather phenomena and improving predictive models. This integrative approach not only advances our knowledge of cosmic ray dynamics, but also has important implications for mitigating risks associated with space weather conditions on Earth.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.