Intensity of 27-day variations in solar emission and ionospheric electron content

IF 2.8 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Artem Setov, Konstantin Ratovsky, Larisa Kashapova
{"title":"Intensity of 27-day variations in solar emission and ionospheric electron content","authors":"Artem Setov,&nbsp;Konstantin Ratovsky,&nbsp;Larisa Kashapova","doi":"10.1016/j.asr.2024.10.054","DOIUrl":null,"url":null,"abstract":"<div><div>The rotation of the Sun modulates solar emission with 27-day variations. Large-scale structures in the solar atmosphere, like sunspots and plages, rotate with the Sun and emit at extreme ultraviolet (EUV) and microwaves that produce the varying part of the emission. As EUV emission is the main driver of ionization in the Earth ionosphere, its variations are reflected in the electron content. In this paper, we analyze wide range of data from radio emission in 245–17000 MHz range and the entire EUV spectrum to total and global electron contents (TEC and GEC, respectively) in the ionosphere to find out where the 27-day variations are most prominent. We show that the relative contribution of 27-day variations to radio emission is maximal at 1000 MHz and decreases at 245 and 17000 MHz. The variations are pronounced throughout the EUV spectrum, their intensity vary at different spectral lines and, on average, is higher than in radio emission. The distribution of the variations in global ionospheric maps (GIM) shows an intensification of 27-day variations in TEC in the North America region, which can be related to the winter anomaly as it is also more significant in this region. Temporal variations of the 27-day component of emission are similar in shape for radio and EUV emission, as well as for GEC, and have a high correlation, up to 0.8. Cycle-averaged temporal variations imply that the 27-day component weakens significantly during solar minimum but can intensify during the remaining phases of the solar cycle. We also find that the flux at 1000 MHz, which originate from free-free emission in contrast to F10.7, can be used as a proxy index of solar activity because it has the highest intensity of 27-day variations and has been observed since 1956.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"75 2","pages":"Pages 2461-2471"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027311772401086X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The rotation of the Sun modulates solar emission with 27-day variations. Large-scale structures in the solar atmosphere, like sunspots and plages, rotate with the Sun and emit at extreme ultraviolet (EUV) and microwaves that produce the varying part of the emission. As EUV emission is the main driver of ionization in the Earth ionosphere, its variations are reflected in the electron content. In this paper, we analyze wide range of data from radio emission in 245–17000 MHz range and the entire EUV spectrum to total and global electron contents (TEC and GEC, respectively) in the ionosphere to find out where the 27-day variations are most prominent. We show that the relative contribution of 27-day variations to radio emission is maximal at 1000 MHz and decreases at 245 and 17000 MHz. The variations are pronounced throughout the EUV spectrum, their intensity vary at different spectral lines and, on average, is higher than in radio emission. The distribution of the variations in global ionospheric maps (GIM) shows an intensification of 27-day variations in TEC in the North America region, which can be related to the winter anomaly as it is also more significant in this region. Temporal variations of the 27-day component of emission are similar in shape for radio and EUV emission, as well as for GEC, and have a high correlation, up to 0.8. Cycle-averaged temporal variations imply that the 27-day component weakens significantly during solar minimum but can intensify during the remaining phases of the solar cycle. We also find that the flux at 1000 MHz, which originate from free-free emission in contrast to F10.7, can be used as a proxy index of solar activity because it has the highest intensity of 27-day variations and has been observed since 1956.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Space Research
Advances in Space Research 地学天文-地球科学综合
CiteScore
5.20
自引率
11.50%
发文量
800
审稿时长
5.8 months
期刊介绍: The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc. NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR). All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信