Hydrostatic mass of galaxy clusters within some theories of gravity

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Feri Apryandi , M. Lawrence Pattersons
{"title":"Hydrostatic mass of galaxy clusters within some theories of gravity","authors":"Feri Apryandi ,&nbsp;M. Lawrence Pattersons","doi":"10.1016/j.nuclphysb.2024.116790","DOIUrl":null,"url":null,"abstract":"<div><div>The mass of galaxy clusters (GCs) can be determined by calculating the hydrostatic equilibrium equation. In this work, we derive the hydrostatic mass of GCs within Eddington-inspired Born-Infeld (EiBI) theory, beyond Horndeski gravity (BHG), and modified emergent Newtonian gravity (MENG) with generalized uncertainty principle (GUP) correction. We apply the formulations on the masses of 10 GCs. We compare our results with the Newtonian mass of GCs. Within a regime, we get an insight that all formulations could match the Newtonian mass. Thus, the impact of the modified theories of gravity used in this work can be neglected in this regime. The noteworthy impact starts if we set <span><math><mi>κ</mi><mo>=</mo><mn>5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>40</mn></mrow></msup></math></span> m<sup>2</sup> for EiBI theory, <span><math><mi>ϒ</mi><mo>=</mo><mo>−</mo><mn>0.1655</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>69</mn></mrow></msup></math></span> for BHG, and <span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><mn>1.656</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>110</mn></mrow></msup></math></span> for MENG. We also compare our results from EiBI theory and BHG with the baryonic masses <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>r</mi></mrow></msub></math></span> of the GCs. A better linear fit is achieved by EiBI theory with <span><math><mi>κ</mi><mo>=</mo><mn>5.80</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>40</mn></mrow></msup></math></span> m<sup>2</sup>, which gives the slope <span><math><mi>M</mi></math></span> of <span><math><mn>0.126</mn><mo>±</mo><mn>0.086</mn></math></span>. This value is closer to unity than the one of BHG. This leads us to the fact that EiBI theory is more effective than BHG in alleviating the mass discrepancy between hydrostatic mass and baryonic mass in GCs. Nevertheless, neither EiBI theory nor BHG completely addresses the mass discrepancy problem.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1011 ","pages":"Article 116790"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324003560","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

The mass of galaxy clusters (GCs) can be determined by calculating the hydrostatic equilibrium equation. In this work, we derive the hydrostatic mass of GCs within Eddington-inspired Born-Infeld (EiBI) theory, beyond Horndeski gravity (BHG), and modified emergent Newtonian gravity (MENG) with generalized uncertainty principle (GUP) correction. We apply the formulations on the masses of 10 GCs. We compare our results with the Newtonian mass of GCs. Within a regime, we get an insight that all formulations could match the Newtonian mass. Thus, the impact of the modified theories of gravity used in this work can be neglected in this regime. The noteworthy impact starts if we set κ=5×1040 m2 for EiBI theory, ϒ=0.1655×1069 for BHG, and β0=1.656×10110 for MENG. We also compare our results from EiBI theory and BHG with the baryonic masses Mbar of the GCs. A better linear fit is achieved by EiBI theory with κ=5.80×1040 m2, which gives the slope M of 0.126±0.086. This value is closer to unity than the one of BHG. This leads us to the fact that EiBI theory is more effective than BHG in alleviating the mass discrepancy between hydrostatic mass and baryonic mass in GCs. Nevertheless, neither EiBI theory nor BHG completely addresses the mass discrepancy problem.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信