Deep learning technique for automatic liver and liver tumor segmentation in CT images

Gowda N Yashaswini , R.V. Manjunath , B Shubha , Punya Prabha , N Aishwarya , H M Manu
{"title":"Deep learning technique for automatic liver and liver tumor segmentation in CT images","authors":"Gowda N Yashaswini ,&nbsp;R.V. Manjunath ,&nbsp;B Shubha ,&nbsp;Punya Prabha ,&nbsp;N Aishwarya ,&nbsp;H M Manu","doi":"10.1016/j.liver.2024.100251","DOIUrl":null,"url":null,"abstract":"<div><div>Segmenting the liver and tumors from computed tomography (CT) scans is crucial for medical studies utilizing machine and deep learning techniques. Semantic segmentation, a critical step in this process, is accomplished effectively using fully convolutional neural networks (CNNs). Most Popular networks like UNet and ResUNet leverage diverse resolution features through meticulous planning of convolutional layers and skip connections. This study introduces an automated system employing different convolutional layers that automatically extract features and preserve the spatial information of each feature. In this study, we employed both UNet and a modified Residual UNet on the 3Dircadb (3D Image Reconstruction for computer Assisted Diagnosis database) dataset to segment the liver and tumor. The ResUNet model achieved remarkable results with a Dice Similarity Coefficient of <strong>91.44%</strong> for liver segmentation and <strong>75.84%</strong> for tumor segmentation on 128 × 128 pixel images. These findings validate the effectiveness of the developed models. Notably both models exhibited excellent performance in tumor segmentation. The primary goal of this paper is to utilize deep learning algorithms for liver and tumor segmentation, assessing the model using metrics such as the Dice Similarity Coefficient, accuracy, and precision.</div></div>","PeriodicalId":100799,"journal":{"name":"Journal of Liver Transplantation","volume":"17 ","pages":"Article 100251"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liver Transplantation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666967624000527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segmenting the liver and tumors from computed tomography (CT) scans is crucial for medical studies utilizing machine and deep learning techniques. Semantic segmentation, a critical step in this process, is accomplished effectively using fully convolutional neural networks (CNNs). Most Popular networks like UNet and ResUNet leverage diverse resolution features through meticulous planning of convolutional layers and skip connections. This study introduces an automated system employing different convolutional layers that automatically extract features and preserve the spatial information of each feature. In this study, we employed both UNet and a modified Residual UNet on the 3Dircadb (3D Image Reconstruction for computer Assisted Diagnosis database) dataset to segment the liver and tumor. The ResUNet model achieved remarkable results with a Dice Similarity Coefficient of 91.44% for liver segmentation and 75.84% for tumor segmentation on 128 × 128 pixel images. These findings validate the effectiveness of the developed models. Notably both models exhibited excellent performance in tumor segmentation. The primary goal of this paper is to utilize deep learning algorithms for liver and tumor segmentation, assessing the model using metrics such as the Dice Similarity Coefficient, accuracy, and precision.
CT图像中肝脏和肝脏肿瘤自动分割的深度学习技术
从计算机断层扫描(CT)中分割肝脏和肿瘤对于利用机器和深度学习技术进行医学研究至关重要。语义分割是这一过程的关键步骤,使用全卷积神经网络(cnn)可以有效地完成。大多数流行的网络,如UNet和ResUNet,通过精心规划卷积层和跳过连接来利用不同的分辨率特征。本文介绍了一种采用不同卷积层自动提取特征并保留每个特征的空间信息的自动化系统。在这项研究中,我们在3Dircadb (3D图像重建计算机辅助诊断数据库)数据集上使用UNet和改进的残差UNet来分割肝脏和肿瘤。ResUNet模型在128 × 128像素的图像上,肝脏分割的Dice Similarity Coefficient为91.44%,肿瘤分割的Dice Similarity Coefficient为75.84%。这些发现验证了所建立模型的有效性。值得注意的是,两种模型在肿瘤分割方面都表现出优异的性能。本文的主要目标是利用深度学习算法进行肝脏和肿瘤分割,使用Dice相似系数、准确性和精度等指标评估模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信