The symmetry approach to quark and lepton masses and mixing

IF 23.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Gui-Jun Ding , José W.F. Valle
{"title":"The symmetry approach to quark and lepton masses and mixing","authors":"Gui-Jun Ding ,&nbsp;José W.F. Valle","doi":"10.1016/j.physrep.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>The Standard Model lacks an organizing principle to describe quark and lepton “flavours”. Neutrino oscillation experiments show that leptons mix very differently from quarks, adding a major challenge to the flavour puzzle. We briefly sketch the seesaw and the dark-matter-mediated “scotogenic” neutrino mass generation approaches. We discuss the limitations of popular neutrino mixing patterns and examine the possibility that they arise from symmetry, giving a bottom-up approach to residual flavour and CP symmetries. We show how such family and/or CP symmetries can yield novel, viable and predictive mixing patterns. Model-independent ways to predict lepton mixing and neutrino mass sum rules are reviewed. We also discuss UV-complete flavour theories in four and more space–time dimensions. As benchmark examples we present an <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> scotogenic construction with trimaximal mixing pattern TM2 and another with <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> flavour symmetry and generalized CP symmetry. Higher-dimensional flavour completions are also briefly discussed, such as 5-D warped flavordynamics with a <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> symmetry yielding a TM1 mixing pattern, detectable neutrinoless double beta decay rates and a very good global fit of flavour observables. We also mention 6-D orbifolds as a way to fix the structure of the 4-D family symmetry. We give a scotogenic benchmark orbifold model predicting the “golden” quark–lepton mass relation, stringent neutrino oscillation parameter regions, and an excellent global flavour fit, including quark observables. Finally, we discuss promising recent progress in tackling the flavour issue through the use of modular symmetries.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1109 ","pages":"Pages 1-105"},"PeriodicalIF":23.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157324004319","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Standard Model lacks an organizing principle to describe quark and lepton “flavours”. Neutrino oscillation experiments show that leptons mix very differently from quarks, adding a major challenge to the flavour puzzle. We briefly sketch the seesaw and the dark-matter-mediated “scotogenic” neutrino mass generation approaches. We discuss the limitations of popular neutrino mixing patterns and examine the possibility that they arise from symmetry, giving a bottom-up approach to residual flavour and CP symmetries. We show how such family and/or CP symmetries can yield novel, viable and predictive mixing patterns. Model-independent ways to predict lepton mixing and neutrino mass sum rules are reviewed. We also discuss UV-complete flavour theories in four and more space–time dimensions. As benchmark examples we present an A4 scotogenic construction with trimaximal mixing pattern TM2 and another with S4 flavour symmetry and generalized CP symmetry. Higher-dimensional flavour completions are also briefly discussed, such as 5-D warped flavordynamics with a T symmetry yielding a TM1 mixing pattern, detectable neutrinoless double beta decay rates and a very good global fit of flavour observables. We also mention 6-D orbifolds as a way to fix the structure of the 4-D family symmetry. We give a scotogenic benchmark orbifold model predicting the “golden” quark–lepton mass relation, stringent neutrino oscillation parameter regions, and an excellent global flavour fit, including quark observables. Finally, we discuss promising recent progress in tackling the flavour issue through the use of modular symmetries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Reports
Physics Reports 物理-物理:综合
CiteScore
56.10
自引率
0.70%
发文量
102
审稿时长
9.1 weeks
期刊介绍: Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信