Biomarker discovery and phytochemical interventions in Alzheimer's disease: A path to therapeutic advances

Q3 Pharmacology, Toxicology and Pharmaceutics
Mithila Debnath, Mahir Azmal, Rashid Taqui, Moshiul Alam Mishu, Ajit Ghosh
{"title":"Biomarker discovery and phytochemical interventions in Alzheimer's disease: A path to therapeutic advances","authors":"Mithila Debnath,&nbsp;Mahir Azmal,&nbsp;Rashid Taqui,&nbsp;Moshiul Alam Mishu,&nbsp;Ajit Ghosh","doi":"10.1016/j.phyplu.2025.100752","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Alzheimer's disease (AD) is a significant and prevalent threat in the current period, with a dearth of accessible treatment options. There is an urgent need to identify novel molecular markers for the diagnosis and treatment of AD. Genetic biomarkers hold promising potential in this regard.</div></div><div><h3>Purpose</h3><div>The study aimed to adopt a new strategy to identify and characterize potential biomarkers and therapeutic phytochemicals for AD by integrating gene expression data and computational analysis.</div></div><div><h3>Methods</h3><div>A differential expression analysis was conducted using GEO2R, where the significant differentially expressed genes (DEGs) were identified in brain areas that include the Entorhinal Cortex (EC) and Posterior Cingulate (PC), as well as in peripheral blood. The interactions between DEGs and phytochemicals were investigated using computational approaches that involve molecular docking and molecular dynamic simulations.</div></div><div><h3>Results</h3><div>A total of 17 potential biomarkers including BAD, CDK5, FN1, ITGA4, and MAPK9 were identified. Quercetin and Berberine have shown significant binding affinities to these biomarkers according to molecular docking studies, indicating their potential as effective treatment agents. The ADME profile has shown the presence of favorable properties, specifically blood-brain barrier permeability. These findings suggest that the biomarkers found are implicated in important pathways associated with the development of AD and they emphasize the potential of Quercetin and Berberine as therapeutic agents.</div></div><div><h3>Conclusions</h3><div>This study provides a thorough comprehension of the molecular basis of AD and proposes that Quercetin and Berberine have the potential as efficacious therapy options. This research provides a promising viewpoint on treatments for AD by focusing on proteins that are increased in certain parts of the brain, such as the EC and PC, which play a crucial role in the pathways leading to neurodegeneration.</div></div>","PeriodicalId":34599,"journal":{"name":"Phytomedicine Plus","volume":"5 1","pages":"Article 100752"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667031325000259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Alzheimer's disease (AD) is a significant and prevalent threat in the current period, with a dearth of accessible treatment options. There is an urgent need to identify novel molecular markers for the diagnosis and treatment of AD. Genetic biomarkers hold promising potential in this regard.

Purpose

The study aimed to adopt a new strategy to identify and characterize potential biomarkers and therapeutic phytochemicals for AD by integrating gene expression data and computational analysis.

Methods

A differential expression analysis was conducted using GEO2R, where the significant differentially expressed genes (DEGs) were identified in brain areas that include the Entorhinal Cortex (EC) and Posterior Cingulate (PC), as well as in peripheral blood. The interactions between DEGs and phytochemicals were investigated using computational approaches that involve molecular docking and molecular dynamic simulations.

Results

A total of 17 potential biomarkers including BAD, CDK5, FN1, ITGA4, and MAPK9 were identified. Quercetin and Berberine have shown significant binding affinities to these biomarkers according to molecular docking studies, indicating their potential as effective treatment agents. The ADME profile has shown the presence of favorable properties, specifically blood-brain barrier permeability. These findings suggest that the biomarkers found are implicated in important pathways associated with the development of AD and they emphasize the potential of Quercetin and Berberine as therapeutic agents.

Conclusions

This study provides a thorough comprehension of the molecular basis of AD and proposes that Quercetin and Berberine have the potential as efficacious therapy options. This research provides a promising viewpoint on treatments for AD by focusing on proteins that are increased in certain parts of the brain, such as the EC and PC, which play a crucial role in the pathways leading to neurodegeneration.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine Plus
Phytomedicine Plus Medicine-Complementary and Alternative Medicine
CiteScore
3.70
自引率
0.00%
发文量
178
审稿时长
81 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信