Mining tailings severely impact plant communities in a rainforest watershed

IF 3.3 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES
G. Wilson Fernandes , Letícia Ramos , Wénita de Souza Justino , Walisson Kenedy-Siqueira , João Carlos Gomes Figueiredo , Yumi Oki , Fernando Figueiredo Goulart , Rubens Manoel dos Santos , João Herbert Moreira Viana , Yule Roberta Ferreira Nunes , Ramiro Aguilar , Lourens Poorter , Masha T. van der Sande , Daniel Negreiros
{"title":"Mining tailings severely impact plant communities in a rainforest watershed","authors":"G. Wilson Fernandes ,&nbsp;Letícia Ramos ,&nbsp;Wénita de Souza Justino ,&nbsp;Walisson Kenedy-Siqueira ,&nbsp;João Carlos Gomes Figueiredo ,&nbsp;Yumi Oki ,&nbsp;Fernando Figueiredo Goulart ,&nbsp;Rubens Manoel dos Santos ,&nbsp;João Herbert Moreira Viana ,&nbsp;Yule Roberta Ferreira Nunes ,&nbsp;Ramiro Aguilar ,&nbsp;Lourens Poorter ,&nbsp;Masha T. van der Sande ,&nbsp;Daniel Negreiros","doi":"10.1016/j.ancene.2025.100462","DOIUrl":null,"url":null,"abstract":"<div><div>The collapse of a mining tailings dam in 2015 drastically affected a large area of an already threatened Atlantic Forest along the Rio Doce in Brazil. We evaluated the interactions between edaphic and floristic factors in impacted and reference sites to understand how the impact of the tailings affected the riparian plant communities along the river. The species richness of the adult and sapling strata was, respectively, 46.4 % and 61.5 % lower in the impacted sites relative to the reference sites. A similar pattern was observed for both species and phylogenetic diversity. We also recorded large changes in species composition in the adult and sapling strata in impacted sites relative to the reference sites along the river. These negative changes in the plant community were correlated with drastic increases in soil iron and phosphorus concentration, and fine sand proportion, and decreases in the proportion of carbon and coarse sand in the sites impacted by the mining tailings. We observed a close relationship between plant composition in both the adult and sapling strata with edaphic factors. The alterations in species composition triggered by the deposition of mining tailings may induce significant shifts in ecosystems, potentially prompting numerous tipping points throughout the river basin, as indicated by the different sapling species, some of which are invasive species of highly difficult eradication. These altered forests might suffer from impoverishment, dominated by a limited species set, some of which could expand its distribution upon neighboring, already threatened, regions. Such expansion could exacerbate the degradation of the Rio Doce watershed to a point of no return to the previous condition.</div></div>","PeriodicalId":56021,"journal":{"name":"Anthropocene","volume":"49 ","pages":"Article 100462"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anthropocene","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213305425000049","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The collapse of a mining tailings dam in 2015 drastically affected a large area of an already threatened Atlantic Forest along the Rio Doce in Brazil. We evaluated the interactions between edaphic and floristic factors in impacted and reference sites to understand how the impact of the tailings affected the riparian plant communities along the river. The species richness of the adult and sapling strata was, respectively, 46.4 % and 61.5 % lower in the impacted sites relative to the reference sites. A similar pattern was observed for both species and phylogenetic diversity. We also recorded large changes in species composition in the adult and sapling strata in impacted sites relative to the reference sites along the river. These negative changes in the plant community were correlated with drastic increases in soil iron and phosphorus concentration, and fine sand proportion, and decreases in the proportion of carbon and coarse sand in the sites impacted by the mining tailings. We observed a close relationship between plant composition in both the adult and sapling strata with edaphic factors. The alterations in species composition triggered by the deposition of mining tailings may induce significant shifts in ecosystems, potentially prompting numerous tipping points throughout the river basin, as indicated by the different sapling species, some of which are invasive species of highly difficult eradication. These altered forests might suffer from impoverishment, dominated by a limited species set, some of which could expand its distribution upon neighboring, already threatened, regions. Such expansion could exacerbate the degradation of the Rio Doce watershed to a point of no return to the previous condition.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Anthropocene
Anthropocene Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.30
自引率
0.00%
发文量
27
审稿时长
102 days
期刊介绍: Anthropocene is an interdisciplinary journal that publishes peer-reviewed works addressing the nature, scale, and extent of interactions that people have with Earth processes and systems. The scope of the journal includes the significance of human activities in altering Earth’s landscapes, oceans, the atmosphere, cryosphere, and ecosystems over a range of time and space scales - from global phenomena over geologic eras to single isolated events - including the linkages, couplings, and feedbacks among physical, chemical, and biological components of Earth systems. The journal also addresses how such alterations can have profound effects on, and implications for, human society. As the scale and pace of human interactions with Earth systems have intensified in recent decades, understanding human-induced alterations in the past and present is critical to our ability to anticipate, mitigate, and adapt to changes in the future. The journal aims to provide a venue to focus research findings, discussions, and debates toward advancing predictive understanding of human interactions with Earth systems - one of the grand challenges of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信