Developing an efficient and optimized irrigation plan under varying water-supply regimes

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Purushottam Agrawal , Jitendra Sinha , Nilima Jangre , Fanesh Kumar , Kamalkant , Alok Sinha , Ashwin Singh , Ashes Banerjee , Akella Satya Venkatesh , Srinivas Pasupuleti
{"title":"Developing an efficient and optimized irrigation plan under varying water-supply regimes","authors":"Purushottam Agrawal ,&nbsp;Jitendra Sinha ,&nbsp;Nilima Jangre ,&nbsp;Fanesh Kumar ,&nbsp;Kamalkant ,&nbsp;Alok Sinha ,&nbsp;Ashwin Singh ,&nbsp;Ashes Banerjee ,&nbsp;Akella Satya Venkatesh ,&nbsp;Srinivas Pasupuleti","doi":"10.1016/j.asej.2025.103272","DOIUrl":null,"url":null,"abstract":"<div><div>Crop development relies on water availability, needs, and application, necessitating large irrigation projects to ensure sustainable and equitable agriculture in the long term. This study investigates water losses and gaps during paddy cultivation in India’s tropical semi-arid region, where agriculture is the primary economic driver for communities. Given the population’s heavy reliance on rice, paddy cultivation was closely examined to identify irrigation-related vulnerabilities. An optimal irrigation plan was developed based on the analysis of the current water supply scenario for four different paddy production situations: 1) Rainfed (10 ha), 2) Rain + Canal irrigated (2174 ha), 3) Rain + Borewell + Rivulet irrigated (165 ha), and 4) Rain + Canal + Borewell irrigated (243  ha). The dependable water availability from rains and canals was calculated at a 75 % probability of exceedance to formulate an optimal water supply for the crop. Under this plan, the required water depth is reduced from 32.9  mm to 7.4  mm, saving 0.6167  Mm<sup>3</sup> of water. In areas with optimized canal supply, no borewell water is needed for the canal-irrigated land supported by borewells (243  ha).</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 2","pages":"Article 103272"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000139","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Crop development relies on water availability, needs, and application, necessitating large irrigation projects to ensure sustainable and equitable agriculture in the long term. This study investigates water losses and gaps during paddy cultivation in India’s tropical semi-arid region, where agriculture is the primary economic driver for communities. Given the population’s heavy reliance on rice, paddy cultivation was closely examined to identify irrigation-related vulnerabilities. An optimal irrigation plan was developed based on the analysis of the current water supply scenario for four different paddy production situations: 1) Rainfed (10 ha), 2) Rain + Canal irrigated (2174 ha), 3) Rain + Borewell + Rivulet irrigated (165 ha), and 4) Rain + Canal + Borewell irrigated (243  ha). The dependable water availability from rains and canals was calculated at a 75 % probability of exceedance to formulate an optimal water supply for the crop. Under this plan, the required water depth is reduced from 32.9  mm to 7.4  mm, saving 0.6167  Mm3 of water. In areas with optimized canal supply, no borewell water is needed for the canal-irrigated land supported by borewells (243  ha).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信