A real–time distributed optimization control for power sharing and voltage restoration in inverter–based microgrids

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Asad Khan , Muhammad Mansoor Khan , Jiang Chuanwen , Danish Khan
{"title":"A real–time distributed optimization control for power sharing and voltage restoration in inverter–based microgrids","authors":"Asad Khan ,&nbsp;Muhammad Mansoor Khan ,&nbsp;Jiang Chuanwen ,&nbsp;Danish Khan","doi":"10.1016/j.asej.2025.103288","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a distributed control framework for grid–forming (GFM) distributed generations (DGs), considering the objectives of active/reactive power sharing and load feeder voltage regulation in inverter–based microgrids (MGs). Battery energy storage systems (BESSs) are controlled GFM sources while solar–powered DGs are working in grid–following (GFL) mode to provide active power support. The proposed method simplifies the global optimization problem into multiple sub–optimal problems by virtually segregating each GFM source into two decoupled sources. Each sub–problem, containing at most two GFM sources and multiple GFL sources with a single distributed agent, is solvable independently using local and neighboring node information. This feature substantially minimizes computational and communication resources, allowing for solutions using low–cost digital signal processors (DSPs). Moreover, the highly distributed nature of the proposed search algorithm ensures fast solution convergence and real–time implementation in multi–agent systems (MAS). Compared to existing segregation methods like Alternating Direction Method of Multipliers (ADMM) and Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) schemes, which segregate the network into complex sub–networks involving several GFM sources, the proposed approach is more suitable for small–scale inverter–based MGs. The framework’s effectiveness is validated through analytical formulation, MATLAB simulations, and realistic experimental results within a multi–feeder test MG system, which includes numerous load feeders and sparsely available GFM DGs, a scenario that has received limited attention in existing literature.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 2","pages":"Article 103288"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000292","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a distributed control framework for grid–forming (GFM) distributed generations (DGs), considering the objectives of active/reactive power sharing and load feeder voltage regulation in inverter–based microgrids (MGs). Battery energy storage systems (BESSs) are controlled GFM sources while solar–powered DGs are working in grid–following (GFL) mode to provide active power support. The proposed method simplifies the global optimization problem into multiple sub–optimal problems by virtually segregating each GFM source into two decoupled sources. Each sub–problem, containing at most two GFM sources and multiple GFL sources with a single distributed agent, is solvable independently using local and neighboring node information. This feature substantially minimizes computational and communication resources, allowing for solutions using low–cost digital signal processors (DSPs). Moreover, the highly distributed nature of the proposed search algorithm ensures fast solution convergence and real–time implementation in multi–agent systems (MAS). Compared to existing segregation methods like Alternating Direction Method of Multipliers (ADMM) and Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) schemes, which segregate the network into complex sub–networks involving several GFM sources, the proposed approach is more suitable for small–scale inverter–based MGs. The framework’s effectiveness is validated through analytical formulation, MATLAB simulations, and realistic experimental results within a multi–feeder test MG system, which includes numerous load feeders and sparsely available GFM DGs, a scenario that has received limited attention in existing literature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信