Vision based stockpile inventory measurement using uncrewed aerial systems

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Faezeh Jafari, Sattar Dorafshan
{"title":"Vision based stockpile inventory measurement using uncrewed aerial systems","authors":"Faezeh Jafari,&nbsp;Sattar Dorafshan","doi":"10.1016/j.asej.2024.103251","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring a stockpile plays a vital role in material inventories at the State Departments of Transportation (DOTs). Various technologies, such as Total Stations (TST), Light Detection and Ranging (LiDAR), and Global Positioning Systems, are conventionally used to obtain stockpile volumes; however, DOTs seek a faster, safer way to obtain an object’s volume with minimal workforce training. Uncrewed Aircraft Systems (UAS), coupled with visual imagery, have the potential to address these limitations; however, UAS visual has not been effectively developed to account for flight parameters in measurements, such as Ground Sampling Distance (GSD). Images of regular and irregular objects were collected in several flights to measure their geometries. The measurements were performed using a computer vision algorithm and a common commercially available photogrammetry tool (Pix4D) as UAS visual and UAS LiDAR. The results indicated that UAS visual is a viable technology that provides consistently accurate measurements of stockpiles of various sizes. The authors used Pix4D to measure volumes ranging from 0.45 m<sup>3</sup> to 2838 m<sup>3</sup> with errors ranging from 4 % to 6 %. The results indicated that ensuring a GSD value of 0.80 cm in visual imagery can lead to accurate volumetric measurements of irregular objects. To reduce the processing time, a deep leaning-based point cloud classification model was developed to detect the objects of interest, stockpiles, and separate them from irrelevant objects. The average volume difference between the volume predicted using Pix4D and point cloud classification was less than 5.5 %. Finally, we compared the advantages and challenges of UAS with traditional methods and UAS LiDAR in terms of data collection time, cost, limitations, and safety. The results demonstrate that using UAS for stockpile volume measurement is safer and more time-consuming and cost-effective.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 2","pages":"Article 103251"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924006324","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring a stockpile plays a vital role in material inventories at the State Departments of Transportation (DOTs). Various technologies, such as Total Stations (TST), Light Detection and Ranging (LiDAR), and Global Positioning Systems, are conventionally used to obtain stockpile volumes; however, DOTs seek a faster, safer way to obtain an object’s volume with minimal workforce training. Uncrewed Aircraft Systems (UAS), coupled with visual imagery, have the potential to address these limitations; however, UAS visual has not been effectively developed to account for flight parameters in measurements, such as Ground Sampling Distance (GSD). Images of regular and irregular objects were collected in several flights to measure their geometries. The measurements were performed using a computer vision algorithm and a common commercially available photogrammetry tool (Pix4D) as UAS visual and UAS LiDAR. The results indicated that UAS visual is a viable technology that provides consistently accurate measurements of stockpiles of various sizes. The authors used Pix4D to measure volumes ranging from 0.45 m3 to 2838 m3 with errors ranging from 4 % to 6 %. The results indicated that ensuring a GSD value of 0.80 cm in visual imagery can lead to accurate volumetric measurements of irregular objects. To reduce the processing time, a deep leaning-based point cloud classification model was developed to detect the objects of interest, stockpiles, and separate them from irrelevant objects. The average volume difference between the volume predicted using Pix4D and point cloud classification was less than 5.5 %. Finally, we compared the advantages and challenges of UAS with traditional methods and UAS LiDAR in terms of data collection time, cost, limitations, and safety. The results demonstrate that using UAS for stockpile volume measurement is safer and more time-consuming and cost-effective.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信