Celestial string integrands & their expansions

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Daniel Bockisch
{"title":"Celestial string integrands & their expansions","authors":"Daniel Bockisch","doi":"10.1016/j.nuclphysb.2025.116792","DOIUrl":null,"url":null,"abstract":"<div><div>We transform the one-loop four-point type I open superstring gluon amplitude to correlation functions on the celestial sphere including both the (non-)orientable planar and non-planar sector. This requires a Mellin transform with respect to the energies of the scattered strings, as well as to integrate over the open-string worldsheet moduli space. After accomplishing the former we obtain celestial string integrands with remaining worldsheet integrals <span><math><mi>Ψ</mi><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></math></span>, where <em>β</em> is related to the conformal scaling dimensions of the conformal primary operators under consideration. Employing an alternative approach of performing an <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>-expansion of the open superstring amplitude first and Mellin transforming afterwards, we obtain a fully integrated expression, capturing the pole structure in the <em>β</em>-plane. The same analysis is performed at tree-level yielding similar results. We conclude by solving <span><math><mi>Ψ</mi><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></math></span> for specific values of <em>β</em>, consistently reproducing the results of the <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>-expansion ansatz. In all approaches we find that the dependence on <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> reduces to that of a simple overall factor of <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>β</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span> at loop and <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>β</mi></mrow></msup></math></span> at tree level, consistent with previous literature.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1011 ","pages":"Article 116792"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325000021","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We transform the one-loop four-point type I open superstring gluon amplitude to correlation functions on the celestial sphere including both the (non-)orientable planar and non-planar sector. This requires a Mellin transform with respect to the energies of the scattered strings, as well as to integrate over the open-string worldsheet moduli space. After accomplishing the former we obtain celestial string integrands with remaining worldsheet integrals Ψ(β), where β is related to the conformal scaling dimensions of the conformal primary operators under consideration. Employing an alternative approach of performing an α-expansion of the open superstring amplitude first and Mellin transforming afterwards, we obtain a fully integrated expression, capturing the pole structure in the β-plane. The same analysis is performed at tree-level yielding similar results. We conclude by solving Ψ(β) for specific values of β, consistently reproducing the results of the α-expansion ansatz. In all approaches we find that the dependence on α reduces to that of a simple overall factor of (α)β3 at loop and (α)β at tree level, consistent with previous literature.
天体弦积分及其展开
我们将单环四点I型开超弦胶子振幅转化为包括(非)可定向平面扇区和非平面扇区的天球上的相关函数。这需要对散射弦的能量进行Mellin变换,并在开弦世界表模空间上进行积分。在完成前者之后,我们得到了带有剩余世界表积分Ψ(β)的天体弦积分,其中β与所考虑的共形初级算子的共形尺度有关。采用先对开放超弦振幅进行α′-展开,然后再进行Mellin变换的方法,我们得到了一个完全集成的表达式,捕捉了β平面上的极点结构。在树级别执行相同的分析,得到类似的结果。我们通过求解Ψ(β)得到β的特定值,一致地再现了α ' -展开分析的结果。在所有方法中,我们发现对α ‘的依赖减少到一个简单的总因子(α ’)β−3在循环和(α ')β在树水平,与先前的文献一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信